
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 997 — #1023

i
i

i
i

i
i

Chapter 3

Unsafe Features

Caveat emptor. A few modern C++ language features provide potential value in a few
fairly specific, niche use cases, yet expose even experienced engineers to ample opportuni-
ties for misuse, often with nonobvious, far-reaching, and sometimes dire consequences. This
chapter introduces C++11 and C++14 features that in specific cases can be used prof-
itably but at disproportionately high risk. Moreover, the effort required to understand these
features, the subtleties surrounding their effective use, and the risks of misusing them go
beyond what many organizations would consider cost effective. Though no modern feature
of C++ is inherently “unsafe,” these few have an especially unattractive risk–reward ratio.
An organization’s leadership must be circumspect when supporting any use of this chap-
ter’s features. Even if they are used properly, code employing such unsafe features might be
unmaintainable by engineers lacking the requisite mastery of the original authors. Further-
more, the presence of these features in a codebase might lead less experienced developers to
employ them in new situations where such use would be strongly contraindicated.
“Unsafe” features are characterized by being of very high risk and little value. Recall from
“An Unsafe Feature” in Chapter 0 that final (p. 1007) was our exemplar for an unsafe fea-
ture. When appropriate, this feature is exactly what’s needed; ironically, unlike its safe cousin
override (p. 104), both from the same Standards proposal, final is easily misused and sel-
dom appropriate. Another unsafe feature is the noexcept specifier (p. 1085); unlike its
related conditionally safe feature the noexcept operator (p. 615), misuse of this feature can
render a codebase brittle and exception unfriendly. Yet another example of an unsafe yet
useful feature is friend (p. 1031). Idiomatic use of this feature (e.g., in CRTP) can be of
substantial value (e.g., in avoiding copy-paste errors), but most other uses (e.g., involving
long-distance friendship) can lead to code that does not scale and is inordinately difficult to
understand, test, and maintain. The benefit of fully teaching any of these features as part
of even an advanced general training course is dubious. Although most of the features pre-
sented in this chapter have the potential to add value, all come with a profoundly high risk
of being misused or a disproportionately high training cost — not only for implementors,
but for maintainers too — and thus are considered unsafe.
In short, widespread adoption of unsafe features offers no sensible risk–reward ratio and thus
is contraindicated. An organization considering incorporating unsafe features into a predom-
inantly C++03 codebase would be well advised to adopt strict standards as to whether and
under what circumstances such features shall be used. Even if you’re an expert in modern
C++, you’d be well advised to fully understand and appreciate the pitfalls in each unsafe
feature you might want to employ.

997

lorihughes
Cross-Out

lorihughes
Inserted Text
e

lorihughes
Inserted Text
the 




