
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 994 — #1020

i
i

i
i

i
i

Lambda Captures Chapter 2 Conditionally Safe Features

int test3()
{

int k;
const int kcpy = k;

[kcpy]() mutable
{

++kcpy; // Error, increment of readonly variable kcpy
};

}

Alternatively, we can either use tuple<const T>, create a ConstWrapper struct that adds
const to the captured object, or write a full-fledged function object in lieu of the leaner
lambda expression.

std::function supports only copyable callable objects

Any lambda expression capturing a move-only object produces a closure type that is itself
movable but not copyable:
void f()
{

std::unique_ptr<int> moo(new int); // some moveonly object
auto c1 = [moo = std::move(moo)]{ }; // lambda that does move capture

static_assert(!std::is_copy_constructible<decltype(c1)>::value, "");
static_assert(std::is_move_constructible<decltype(c1)>::value, "");

}

Lambdas are sometimes used to initialize instances of std::function, which requires the
stored callable object to be copyable:
std::function<void()> f = c1; // Error, la must be copyable.

Such a limitation — which is more likely to be encountered when using lambda-capture
expressions — can make std::function unsuitable for use cases where move-only closures
might conceivably be reasonable. Possible workarounds include (1) using a different type-
erased, callable object wrapper type that supports move-only callable objects,3 (2) taking
a performance hit by wrapping the desired callable object into a copyable wrapper (such
as std::shared_ptr), or (3) designing software such that noncopyable objects, once con-
structed, never need to move.4

3The any_invocable library type, proposed for C++23, is an example of a type-erased wrapper for
move-only callable objects; see calabrese20.

4We plan to offer an in-depth discussion of how large systems can benefit from a design that embraces
local arena memory allocators and, thus, minimizes the use of moves across natural memory boundaries
identified throughout the system; see lakos22.

994

lorihughes
Cross-Out

lorihughes
Inserted Text
c1

