
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 993 — #1019

i
i

i
i

i
i

Section 2.2 C++14 Lambda Captures

#include <tuple> // std::tuple

template <typename T>
void f(T&& x)
{

auto c1 = [y = std::tuple<T>(std::forward<T>(x))]
{

// ... (Use std::get<0>(y) instead of y in this lambda body.)
};

}

In the revised code example above, T will be an lvalue reference if x was originally an
lvalue, resulting in the std::tuple containing an lvalue reference being the type of y, which
— in turn — has semantics equivalent to x’s being captured by reference. Otherwise, T will
not be a reference type, and x will be moved into the closure.

Annoyances

There’s no easy way to synthesize a const data member

Consider the hypothetical case where the programmer desires to capture a copy of a non-
const integer k as a const closure data member:
void test1()
{

int k = 0;
[kcpy = static_cast<const int>(k)]() mutable // const is ignored.
{

++kcpy; // "OK" ­­ i.e., compiles anyway even though we don't want it to
};

}

void test2()
{

int k = 0;
[const kcpy = k]() mutable // Error, invalid syntax
{

++kcpy; // no easy way to force this variable to be const
};

}

The language simply does not provide a convenient mechanism for synthesizing, from a
modifiable variable, a const data member. The simplest workaround is to create a const
copy of the object in question and then capture it with traditional lambda-capture
expressions:

993

lorihughes
Inserted Text
tuple, which will then be copied into the 




