
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 982 — #1008

i
i

i
i

i
i

Generic Lambdas Chapter 2 Conditionally Safe Features

Not only is the argument v constrained to being a vector, but the deduced element type T
is available for use within the function. The same sort of pattern matching is not available
portably for generic lambdas:

auto y1 = [](std::vector<auto>& v) { }; // Error, auto as template parameter

Constraining the deduced type of an auto parameter using metaprogramming, e.g., through
the use of std::enable_if, is sometimes possible:

#include <type_traits> // std::enable_if_t, std::is_same,
// std::remove_reference_t

auto y2 = [](auto& v) > std::enable_if_t<
std::is_same<

std::vector<typename std::remove_reference_t<decltype(v)>::value_type>&,
decltype(v)

>::value> { };

The y2 closure can be called only with a vector. Any other type will fail substitution
because is_same will return false if substitution even gets that far; substitution might fail
earlier if the type for v does not have a nested value_type. Passing nonvector arguments
to this constrained lambda will now fail at the call site, rather than, presumably, failing
during instantiation of y2(v):

void g1()
{

int i;
std::vector<int> v1;
std::vector<float> v2;

y2(i); // Error, cannot call y2 on a nonvector
y2(v1); // OK, v1 is a vector
y2(v2); // OK, v2 is a vector

}

For all of the additional complication in y2, the element type for our vector is still not avail-
able within the lambda body, as it was for the function body for f1, above; we would need
to repeat the type name typename std::remove_reference_t<decltype(v)>::value_type
if the element type became necessary.
This annoyance is of no practical significance because lambda expressions cannot be over-
loaded. In the absence of overloading, there is little benefit to removing a call from the
overload set compared to simply letting the instantiation fail, especially as most lambda
expressions are defined at the point of use, making it comparatively easy to diagnose a
compilation problem if one occurs. Moreover, this point-of-use definition is already tuned
to ts expected use case, so constraints are often redundant, adding little additional safety to
the code.

982

lorihughes
Inserted Text
i
[its]




