“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 969 — #0995

Section 2.2 C++14 Generic Lambdas

struct _ lambda_2 // compiler-generated name; not visible to the user

{
template <typename __T>

__T operator()(__T x) const { return x; }

// ...
};
__lambda_1 identityInt = __ lambda_1();
__lambda_2 identity = __lambda_2();

Note that the names __ lambda_1, _ lambda_2, and __ T are for descriptive purpose and are
not available to the user; the compiler might choose any name or no name for these entities.

A generic lambda is any lambda expression having one or more parameters declared using
the placeholder type auto. The compiler generates a template parameter type for each
auto parameter in the generic lambda, and that type is substituted for auto in the function-
call operator’s parameter list. In the identity example above, auto x is replaced with
__T x, where __T is a new template parameter type. When user code subsequently calls,
e.g., identity(42), normal template type deduction takes place, and operator()<int>
is instantiated.

Lambda capture and mutable closures

The closure type produced by a generic lambda is not a class template. Rather, its function
call operator and its conversion-to-function-pointer operator (as we’ll see later in Conver-
sion to a pointer to function on page 974) are function templates. In particular, the
lambda capture, which creates data members within the closure type, has the same
syntax and semantics for all lambda expressions, generic or not. Similarly, the mutable
qualifier has the same effect for generic lambdas as for nongeneric lambdas:

#include <algorithm> // std::for_each
#include <iterator> // std::next

template <typename FwdIter>

auto secondBiggest(FwdIter begin, FwdIter end)
// Return the second-largest element in the range [begin, end),
// assuming at least two elements and that all values in the range
// are distinct.

auto second = std::next(begin); // Refer to second element.
auto ret = *second; // Set to second element.
std::for_each(second, end,

[biggest = *begin, &ret](const auto& element) mutable

{
if (biggest <= element) {

969


lorihughes
Highlight
remove gloss font

lorihughes
Inserted Text
-




