
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 968 — #994

i
i

i
i

i
i

Generic Lambdas Chapter 2 Conditionally Safe Features

Lambdas Having a Templated Call Operator

C++14 extends the lambda expression syntax of C++11 to allow a templated definition
of the function call operator belonging to the closure type.

Description

Generic lambdas are a C++14 extension of C++11 lambda expressions (see Section 2.1.
“Lambdas” on page 573) for which the function call operator is a member function template,
which enables the deduction of template argument types at the point of invocation.
Consider two lambda expressions, each of which simply returns its argument:
auto identityInt = [](int a) { return a; }; // nongeneric lambda
auto identity = [](auto a) { return a; }; // generic lambda

Generic lambdas are characterized by the presence of one or more auto parameters, accepting
arguments of any type. In the example above, the first version is a nongeneric lambda
having a parameter of concrete type int. The second version is a generic lambda because
its parameter uses the placeholder type auto. Unlike identityInt, which is callable only
for arguments implicitly convertible to int, identity can be applied to any type that can
be passed by value:
int a1 = identityInt(42); // OK, a1 == 42
double a2 = identityInt(3.14); // Bug, a2 == 3, truncation warning
const char* a3 = identityInt("hi"); // Error, cannot pass "hi" as int
int a4 = identity(42); // OK, a4 == 42
double a5 = identity(3.14); // OK, a5 == 3.14
const char* a6 = identity("hi"); // OK, strcmp(a6, "hi") == 0

Generic lambdas accomplish this compile-time polymorphism by defining their function call
operator — operator() — as a template. Recall that the result of a lambda expression is a
closure object, an object of unique type having a function call operator; i.e., the closure
type is a unique functor class. The parameters defined in the lambda expression become
the parameters to the function call operator. The following code transformation is roughly
equivalent to the definitions of the identityInt and identity closure objects from the
example above:
struct __lambda_1 // compiler­generated name; not visible to the user
{

int operator()(int x) const { return x; }
// ...

};

968

lorihughes
Cross-Out

lorihughes
Inserted Text
declaration

[and set in gloss font]

lorihughes
Cross-Out

lorihughes
Inserted Text
declaring

[set in gloss font]

lorihughes
Cross-Out

lorihughes
Inserted Text
of

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Cross-Out

lorihughes
Inserted Text
-




