
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 964 — #990

i
i

i
i

i
i

constexpr Functions '14 Chapter 2 Conditionally Safe Features

// In this case, the second argument will be partitioned as the first
// type in the sequence and the possibly empty remainder of the
// TypeList. The compiletime value of the base class will be either the
// same as or one greater than the value accumulated in the TypeList so
// far, depending on whether the first element is the same as the one
// supplied as the first type to Count.

static_assert(Count<int, TypeList<int, char, int, bool>>::value == 2, "");

Notice that we made use of a C++11 parameter pack, Tail... (see Section 2.1.“Variadic
Templates” on page 873), in the implementation of the simple template specialization to
package up and pass along any remaining types.
The C++11 restrictions encourage both somewhat rarefied metaprogramming-related knowl-
edge and a recursive implementation that can be compile-time intensive in practice. For a
more efficient C++11 version of Count, see constexpr type list Count algorithm in Appendix
— Optimized C++11 example algorithms on page 966. By exploiting C++14’s relaxed
constexpr rules, a simpler and typically more compile-time friendly imperative solution can
be realized:
template <typename X, typename... Ts>
constexpr int count()
{

bool matches[sizeof...(Ts)] = { std::is_same<X, Ts>::value... };
// Create a corresponding array of bits where 1 indicates sameness.

int result = 0;
for (bool m : matches) // (C++11) rangebased for loop
{

result += m; // Add up 1 bits in the array.
}

return result; // Return the accumulated number of matches.
}

The implementation above — though more efficient and comprehensible — will require some
initial learning for those unfamiliar with C++ variadic templates. The general idea here is
to use pack expansion in a nonrecursive manner (see Section 2.1.“Variadic Templates” on
page 873) to initialize the matches array with a sequence of zeros and ones (representing,
respectively, mismatches and matches between X and a type in the Ts... pack) and then
iterate over the array to accumulate the number of ones as the final result. This constexpr-
based solution is both easier to understand and typically faster to compile.6

6For a type list containing 1,024 types, the imperative (C++14) solution compiles about twice as fast
on GCC 11.2 (c. 2021) and roughly 2.6 times faster on Clang 12.0.1 (c. 2021).

964

lorihughes
Cross-Out

lorihughes
Inserted Text
Create an array of Booleans where `true` indicates sameness.

lorihughes
Cross-Out

lorihughes
Inserted Text
the `true` values




