
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 961 — #987

i
i

i
i

i
i

Section 2.2 C++14 constexpr Functions '14

Use Cases

Nonrecursive constexpr algorithms

The C++11 restrictions on constexpr functions often forced programmers to implement
naturally iterative algorithms in a recursive manner. Consider, as a familiar example, a
naive C++11-compliant implementation of a constexpr function, fib11, returning the nth
Fibonacci number:
constexpr long long fib11(long long x)
{

return
x == 0 ? 0

: (x == 1 || x == 2) ? 1
: fib11(x 1) + fib11(x 2);

}

For a more efficient (yet less intuitive) C++11 algorithm, see Recursive Fibonacci in Appendix
— Optimized C++11 example algorithms on page 965.
We used long long (instead of long) here to ensure a unique C++ type having at least
8 bytes on all conforming platforms for simplicity of exposition. We deliberately chose not
to make the value returned unsigned because the extra bit does not justify changing the
algebra (from signed to unsigned). For more discussion on these specific topics, see Sec-
tion 1.1.“long long” on page 89.
The implementation of the fib11 function (above) has several undesirable properties.

1. Reading difficulty — Because it was implemented using a single return statement,
branching requires a chain of ternary operators, leading to a single long expression
that might impede human comprehension. This particular example can be written
more concisely:
constexpr long long fib11(long long x)
{

return x <= 1 ? x : fib11(x 1) + fib11(x 2);
}

However, not all such recurrence relations admit such simplification, and in any event,
such cosmetic modifications have no effect on efficiency.

2. Inefficiency and poor scaling — The explosion of recursive calls is taxing on com-
pilers: (1) the time to compile is markedly longer for the recursive C++11 algorithm
than it would be for its iterative C++14 counterpart, even for modest inputs,2 and (2)

2As an example, Clang 12.0.1 (c. 2021), running on an x86-64 machine, required more than 80 times
longer to evaluate fib(27) implemented using the recursive (C++11) algorithm than to evaluate the same
functionality implemented using the iterative (C++14) algorithm.

961

lorihughes
Cross-Out

lorihughes
Inserted Text
(x == 0 || x == 1)

Brian Bi
Change to `int`

Brian Bi
Change to `int`

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Cross-Out

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 962 — #988

i
i

i
i

i
i

constexpr Functions '14 Chapter 2 Conditionally Safe Features

the compiler might simply refuse to complete the compile-time calculation if it exceeds
some internal (platform-dependent) threshold for the allowed number of operations.3

3. Redundancy — Even if the recursive implementation were suitable for small input
values during compile-time evaluation, it would be unlikely to be suitable for any
run-time evaluation, thereby requiring programmers to provide and maintain two sep-
arate versions of the same algorithm: a compile-time recursive one and a runtime
iterative one.

In contrast, an imperative implementation of a constexpr function returning the nth Fibo-
nacci number in C++14, fib14, does not have any of the deficiencies discussed above:
constexpr long long fib14(long long x)
{

if (x == 0) { return 0; }

long long a = 0;
long long b = 1;

for (long long i = 2; i <= x; ++i)
{

long long temp = a + b;
a = b;
b = temp;

}

return b;
}

As one would expect, the compile time required to evaluate the iterative implementation
above is manageable4; of course, far more computationally efficient — e.g., closed form5 —
solutions to this classic exercise are available.

3As an example, Clang 12.0.1 (c. 2021), running on an x86-64 machine, fails to compile fib11(28):

error: static_assert expression is not an integral constant expression
static_assert(fib11(28) == 317811, "");

^~~~~~~~~~~~~~~~~~~

note: constexpr evaluation hit maximum step limit; possible infinite loop?

GCC 11.2 (c. 2021) fails at fib(36), with a similar diagnostic:

error: 'constexpr' evaluation operation count exceeds limit of 33554432
(use 'fconstexpropslimit=' to increase the limit)

Clang 12.0.1 (c. 2021) fails to compile any attempt at constant evaluation of fib11(28), with the following
diagnostic message:

note: constexpr evaluation hit maximum step limit; possible infinite loop?

4Both GCC 11.2 (c. 2021) and Clang 12.0.1 (c. 2021) evaluated fib14(46) correctly in less than 20ms
on a machine running Windows 10 x64 and equipped with an Intel Core i7-9700k CPU.

5E.g., see http://mathonline.wikidot.com/a-closed-form-of-the-fibonacci-sequence.

962

Brian Bi
Change to `int`

Brian Bi
Change to `int`

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
5
[fn tag]

lorihughes
Inserted Text
 and https://math.stackexchange.com/questions/867394/how-to-compute-the-nth-number-of-a-general-fibonacci-sequence-with-matrix-multip

