
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 957 — #983

i
i

i
i

i
i

Section 2.1 C++11 Variadic Templates

Expansion is rigid and requires verbose support code

There are only two syntactic constructs that apply to parameter packs: sizeof... and
expansion via The latter underlies virtually all treatment of variadics and, as discussed,
requires handwritten support classes or functions as scaffolding toward building a somewhat
involved recursion-based pattern.
There is no expansion in an expression context, so it is not possible to write functions such
as print in a concise, single-definition manner; see Use Cases — Generic variadic functions
on page 925. In particular, expressions are not expansion contexts, so the following code will
not work:
#include <iostream> // std::cout, std::ostream, std::endl

template <typename... Ts>
std::ostream& print(const Ts&... vs)
{

std::cout << vs...; // Error, invalid expansion
return std::cout << std::endl;

}

Linear search for everything

One common issue with parameter packs is the difficulty of accessing elements in an indexed
manner. Getting to the nth element of a pack is a linear search operation by necessity, which
makes certain uses awkward and potentially time-consuming during compilation. Refer to
the implementation of destroyLog in Use Cases — Variant types on page 937 as an example.

See Also

• “Braced Init” (§2.1, p. 215) illustrates one of the expansion contexts for function
parameter packs.

• “Forwarding References” (§2.1, p. 377) describes a feature used in conjunction with
variadic function templates to achieve perfect forwarding.

• “Lambdas” (§2.1, p. 573) introduces a feature that supports pack expansion in its
capture list.

957

lorihughes
Cross-Out

