
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 956 — #982

i
i

i
i

i
i

Variadic Templates Chapter 2 Conditionally Safe Features

Parameter packs cannot be used unexpanded

As discussed in Description — Pack expansion on page 908, the name of a parameter pack
cannot appear on its own in a correct C++ program; the only way to use a parameter pack is
as part of an expansion by using ... or sizeof. Such behavior is unlike types, template
names, or values.
It is impossible to pass parameter packs around or to give them alternative names (as is
possible with types by means of typedef and using and with values by means of references).
Consequently, it is also impossible to define them as “return” values for metafunctions follow-
ing conventions such as ::type and ::value that are commonly used in the <type_traits>
standard header.
Consider, for example, sorting a type parameter pack by size. This simple task is not possible
without a few helper types because there is no way to return the sorted pack. One necessary
helper would be a typelist:
template <typename...> struct Typelist { };

With this helper type in hand, it is possible to encapsulate parameter packs, give them
alternate names, and so on — in short, give parameter packs the same maneuverability that
C++ types have:
typedef Typelist<short, int, long, float, double, long double> Numbers;

// can be used to give a pack an alternate name

template <typename L>
struct SortBySize
{

using type = Typelist< /*...*/ >; // computed sortedbysize version of
// the Typelist L

};

typedef SortBySize<Numbers>::type SortedNumbers;
// can be used to "return" a pack from a metafunction

Currently no Typelist facility has been standardized. An active proposal26 introduces
parameter_pack along the same lines as Typelist above. Meanwhile, compiler vendors have
attempted to work around the problem in nonstandard ways.27 A related proposal28 defines
std::bases and std::direct_bases but has, at the time of writing, been rejected.

26spertus13
27GNU defines the nonstandard primitives std::tr2::__direct_bases and std::tr2::__bases. The first

yields a list of all direct bases of a given class, and the second yields the transitive closure of all bases
of a class, including the indirect ones. To make these artifacts possible, GNU defines and uses a helper
__reflection_typelist class template similar to Typelist above.

28spertus09

956

lorihughes
Cross-Out

lorihughes
Inserted Text
use

lorihughes
Cross-Out

lorihughes
Inserted Text
libstdc++

lorihughes
Cross-Out

lorihughes
Inserted Text
libstdc++




