
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 952 — #978

i
i

i
i

i
i

Variadic Templates Chapter 2 Conditionally Safe Features

Potential Pitfalls

Accidental use of C-style ellipsis

Inside the function parameters declaration, ... can be used only in conjunction with a
template parameter pack. However, there is an ancient use of ... in conjunction with C-
style variadic functions such as printf. That use can cause confusion. Say we set out to
declare a simple variadic function, process, that takes any number of arguments by pointer:
class Widget; // declaration of some user-defined type

template <typename... Widgets> // parameter pack named Widgets
int process(Widget*...); // meant as a pack expansion, but is it?

The author meant to declare process as a variadic function taking any number of pointers
to objects. However, instead of Widgets*..., the author mistakenly typed Widget*... (note
the missing “s”). This typo took the declaration into a completely different place: It is now
a C-style variadic function in the same category as printf. Recall the printf declaration
in the C Standard Library:
int printf(const char* format, ...);

The comma and the parameter name are optional in C and C++, so omitting both leads to
an equivalent declaration:
int printf(const char*...);

Comparing process (with the typo in tow) with printf makes it clear that process is
a C-style variadic function. Runtime errors of any consequence are quite rare because the
expansion mechanisms are different across the two kinds of variadics. However, the compile-
and link-time diagnostics can be puzzling. In addition, if the variadic function ignores the
arguments passed to it, calling it might even compile, but the call will likely use a different
calling convention than what was intended or assumed.
As an anecdote, a similar situation occurred during the review stage of this feature section.
A simple misunderstanding caused a function to be declared inadvertently as a C-style
variadic instead of C++ variadic template, leading to numerous indecipherable compile-
time and link-time errors in testing that took many emails to figure out.

Undiagnosed errors

Description — Corner cases of function template argument matching on page 900 shows
definitions of variadic template functions that are in error according to the C++ Standard
yet pass compilation on contemporary compilers — that is, IFNDR. In certain cases, they
can even be called. Such situations are most assuredly latent bugs:

952

lorihughes
Highlight
transpose

[function templates]

lorihughes
Sticky Note
Unmarked set by lorihughes




