
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 929 — #955

i
i

i
i

i
i

Section 2.1 C++11 Variadic Templates

need not even allocate space for unused on the stack, let alone initialize its elements.14 Note
that the pack expansion always calls extent with exactly one argument, so there is no need
to define extent’s recursive variadic overload or parameterless base-case overload.
The technique used to compute resultLen is applied again to append each element of args
— be it a char, a const char*, or an std::string — to the end of result. Because the
pack expansion context is an initializer list, the side effects of the expressions in the pack
expansion are guaranteed to occur in order, unlike, say, a function argument list, which
has no such ordering guarantee. Note that a pack expansion could be used to initialize
a temporary object of type std::initializer_list<bool> to yield the same result by
replacing { bool unused[] = { ... }; } with (void) initializer_list<bool>{ ... }; for
the two uses of the idiom; see Section 2.1.“initializer_list” on page 553.

Object factories

Suppose we want to define a generic factory function— a function able to create an instance
of any given type by calling one of its constructors. Object factories15,16 allow libraries and
applications to centrally control object creation for a variety of reasons: using special memory
allocation, tracing and logging, benchmarking, object pooling, late binding, deserialization,
interning, and more.
The challenge in defining a generic object factory is that the type to be created (and therefore
its constructors) is not known at the time of writing the factory. That’s why C++03 object
factories typically offer only default object construction, forcing clients to awkwardly use
two-phase initialization, first to create an empty object and then to put it in a meaningful
state.
Writing a generic function that can transparently forward calls to another function (per-
fect forwarding) has been a long-standing challenge in C++03. An important part of
the puzzle is making the forwarding function generic in the number of arguments, which is
where variadic templates help in conjunction with forwarding references (see Section 2.1.
“Forwarding References” on page 377):
#include <utility> // std::forward

void log(const char* message); // logging function

template <typename Product, typename... Ts> // type to be created and params
Product factory(Ts&&... xs) // call by forwarding reference
{

log("factory(): Creating a new object"); // Do some logging.
return Product(std::forward<Ts>(xs)...); // Forward arguments to ctor.

}

14Experiments with both Clang 12.0.0 (c. 2021) and GCC 11.1 (c. 2021) show that the unused array is
entirely optimized away at optimization level -O2, even if the { and } braces surrounding the definition of
unused are omitted.

15gamma95, Chapter 3, section “Factory Method,” pp. 107–115
16alexandrescu01, Chapter 8, “Object Factories,” pp. 197–218

929

lorihughes
Cross-Out

lorihughes
Inserted Text
generic factory function




