
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 926 — #952

i
i

i
i

i
i

Variadic Templates Chapter 2 Conditionally Safe Features

The implementation follows a head-and-tail recursion that is typically used for C++ variadic
function templates. The first overload of print has no parameters and simply outputs a
newline to the console. The second overload does the bulk of the work. It takes one or more
arguments, prints the first, and recursively calls print to print the rest. In the limit, print
is called with no arguments, and the first definition kicks in, outputting the line terminator
and also ending the recursion.
A variadic function’s smallest number of allowed arguments does not have to be zero, and
it is free to follow many other recursion patterns. For example, suppose we want to define a
variadic function isOneOf that returns true if and only if its first argument is equal to one of
the subsequent arguments. Calls to such a function are sensible for two or more arguments:

template <typename T1, typename T2> // normal template function
bool isOneOf(const T1& a, const T2& b) // two-parameter version
{
return a == b;

}

template <typename T1, typename T2, typename... Ts> // two or more arguments
bool isOneOf(const T1& a, const T2& b, const Ts&... xs) // all by const&
{
return a == b || isOneOf(a, xs...); // compare, recurse

}

Again, the implementation uses two definitions in a pseudorecursive setup but in a slightly
different stance. The first definition handles two items and also stops recursion. The second
version takes three or more arguments, handles the first two, and issues the recursive call
only if the comparison yields false.
Let’s take a look at a few uses of isOneOf:

#include <string> // std::string

int a = 42;
bool b1 = isOneOf(a, 1, 42, 4); // b1 is true.
bool b2 = isOneOf(a, 1, 2, 3); // b2 is false.
bool b3 = isOneOf(a, 1, "two"); // Error, can't compare int with const char*
std::string s = "Hi";
bool b4 = isOneOf(s, "Hi", "a"); // b4 is true.
bool b5 = isOneOf(s); // Error, no overload takes fewer than two parameters.

Processing variadic arguments in order

Let’s now consider two possible implementations of the variadic string concatenation func-
tion concat, introduced in Description on page 873: one using a recursive approach, and the
other taking advantage of braced initialization (see Section 2.1.“Braced Init” on page 215)
to avoid recursion.

926

lorihughes
Highlight
transpose

