
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 81 — #107

i
i

i
i

i
i

Section 1.1 C++11 Function static '11

Further Reading

• For an in-depth discussion of the difficulties of implementing double-checked locking
in C++03, see meyers04a and meyers04b.

• For a discussion of the Singleton pattern and a variety of implementations in C++03,
see Chapter 6 of alexandrescu01.

Appendix

C++03 double-checked-lock pattern

Prior to the introduction of the function-scope static object initialization guarantees dis-
cussed in Description on page 68, preventing multiple initializations of static objects and
use before initialization of those same objects was still needed. Guarding access using a
mutex was often a significant performance cost, so using the unreliable, double-checked-lock
pattern was often attempted to avoid the overhead:
Logger& getInstance()
{

static Logger* volatile loggerPtr = 0; // hack, used to simulate atomics

if (!loggerPtr) // Does the logger need to be initialized?
{

static std::mutex m;
std::lock_guard<std::mutex> guard(m); // Lock the mutex.

if (!loggerPtr) // We are first, as the logger is still uninitialized.
{

static Logger logger("log.txt");
loggerPtr = &logger;

}
} // Either way, the lock guard unlocks the mutex here.

return *loggerPtr;
}

xor eax, eax ; zero out 'eax' register
ret ; return from 'main'

A sufficiently smart compiler might, however, not generate synchronization code in a single-threaded context
or else provide a flag to control this behavior.

81

lorihughes
Highlight
[remove code font]

lorihughes
Cross-Out

lorihughes
Inserted Text
my::Mutex

lorihughes
Cross-Out

lorihughes
Inserted Text
my::LockGuard<my::Mutex>

lorihughes
Pencil
[
move to first line
blank line
]



i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 82 — #108

i
i

i
i

i
i

Function static '11 Chapter 1 Safe Features

In this example, we are using a volatile pointer as a partial substitute for an atomic
variable, a nonportable solution that is not correct in standard C++ but has historically been
moderately effective. The C++11 Standard Library does, however, provide the <atomic>
header, which is a far superior alternative, and many implementations have historically
provided extensions to support atomic types even prior to C++11. Where available, compiler
extensions are typically preferable over home-grown solutions.
In addition to being difficult to write, this decidedly complex workaround would often prove
unreliable. The problem is that, even though the logic appears sound, architectural changes
in widely used CPUs allowed for the CPU itself to optimize and reorder the sequence of
instructions. Without additional support, the hardware would not see the dependency that
the second test of loggerPtr has on the locking behavior of the mutex and would do the
read of loggedPtr prior to acquiring the lock. This reordering of instructions would then
allow multiple threads to acquire the lock while each thinking the static variable still needs
to be initialized.
To solve this subtle issue, concurrency library authors are expected to issue ordering hints,
such as fences and barriers. A well-implemented threading library would provide atom-
ics equivalent to the modern std::atomic that would issue the correct instructions when
accessed and modified. The C++11 Standard makes the compiler aware of these concerns
and provides portable atomics and support for threading that enables users to handle
such issues correctly. The above getInstance function could be corrected by changing
the type of loggerPtr to std::atomic<Logger*>. Prior to C++11, despite being compli-
cated, the same function would reliably implement the Meyers Singleton (see Use Cases —
Meyers Singleton on page 71) in C++03 on contemporary hardware.

82

lorihughes
Inserted Text
This example alters the problem to potential issues with the initialization of the mutex itself. This pattern is safe to use only after `main` has begun due to other issues that might be encountered during the initialization of namespace-scope objects with static storage duration; see Potential Pitfalls — static-storage-duration object-initialization order is not guaranteed on page 75.

[para break] 




