“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 807 — #3833

Section 2.1 C++11 Rvalue References

In practice, when implementing perfect forwarding, making a mistake in any one of these
facets will result in not having a forwarding reference and compilation errors. Being unable
to state clearly the intent to have a forwarding reference makes misuse by developers more
likely and compilation errors more difficult to diagnose.

Value categories are a moving target

C++03 had just lvalues and rvalues. In the original design of C++11, the only zvalues were
once [values. In C++14, members of prvalue user-defined types also became zvalues. In
C+-+17 even more prvalues were identified as zvalues. Some of these changes have been
adopted as defect reports against older standards, and some have introduced subtle changes
in behavior between language standards.

In any case, the progression is in one direction: there were no rvalues in C+-+03 that were
not prvalues in C++11, and then the demarcation between prvalue and zvalue continued
to drift so that the categories of nonlvalues that were deemed to be zvalues grew. The
criterion now is not that an zvalue is a nonlvalue that is reachable but that it is a nonlvalue
that refers to an object in memory; a prvalue now becomes everything else that isn’t an
lvalue and, unless void, must be a complete type. Once something becomes an zvalue in the
Standard, it can never go back to being a prvalue. Understanding the evolution is helpful
to understanding how the C++ language is evolving; see the Appendiz — The evolution of
value categories on page 813.

Overall, what the literature has lacked and the Standard’s evolution has made difficult to
understand is a clear designation of what the value categories are and what their purpose
is. The realization that the zvalue category needed to encompass all objects whose data is
no longer needed — whether due to being a temporary whose lifetime is ending or due
to an explicit cast in code — took a great deal of time to clarify, with various edge cases
continuing to surface.?’

Standard Library requirements on a moved-from object are overly strict

By Sean Parent

Given an object, rv, of type T that has been moved from, the C++143! Standard specifies
the required postconditions of a moved-from object3:

rv’s state is unspecified [Note: rv must still meet the requirements of the library
component that is using it. The operations listed in those requirements must
work as specified whether rv has been moved from or not. — end note]

30Though the distinction between a prvalue and an zvalue is largely academic prior to C+417, with the
adoption of proposal P0135R0 (smith15c), knowing the difference becomes important in light of guaranteed
copy elision and, in particular, mandatory RVO for prvalues.

31Gimilar wording having the same intent appears in every version of the C++ Standard since C++11.

32§s014, Table 20, p. 427

807


lorihughes
Inserted Text
in possible 




