
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 794 — #820

i
i

i
i

i
i

Rvalue References Chapter 2 Conditionally Safe Features

if (!rhs.d_movedFrom)
{

// Move/copy all state from rhs.
}
d_movedFrom = rhs.d_movedFrom;
rhs.d_movedFrom = true;

}
return *this;

}

~MovableMechanism()
{

if (!d_movedFrom)
{

// ... (existing implementation of Mechanism)
}

}

void doWork()
{

assert(!d_movedFrom); // needs to be added to ALL public functions
// ... (existing implementation of doWork)

}
};

As the sketch of the MovableMechanism class implementation above suggests, adding mov-
ability to a nonmovable noncopyable type, Mechanism, requires modifications to almost
every aspect of of the type — at least all publicly accessible aspects of it. Should any of
the original special member functions of Mechanism have been defaulted (see Section 1.1.
“Defaulted Functions” on page 33), they might now need to become user provided to properly
handle the new moved-from state. Moreover, changes to preconditions or essential behavior
will necessarily invalidate any corresponding documentation. What’s more, robust software
implementing defensive checks (e.g., using standard C assert macros) will naturally want
to implement new checks for all the newly established preconditions. Finally, all behavioral
changes will require thorough updating of existing tests along with addressing all func-
tionality that previously did not exist, including the negative testing of all newly added
defensive checks.

Inconsistent expectations on moved-from objects

When creating a type that supports move operations, a key decision to be made is in what
states moved-from objects of that type may be left and what operations will be valid on
such objects. When writing code that uses a movable type, especially generic code, it is also
important to understand and document the requirements on the template parameters. When
a generic type has higher expectations for what can be done with moved-from objects than

794

lorihughes
Cross-Out




