
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 783 — #809

i
i

i
i

i
i

Section 2.1 C++11 Rvalue References

class String
{
public:

String(const std::string&); // Copy the contents of string.
};

class S
{

String d_s; // Implementation changed.

public:
S(std::string s) : d_s(std::move(s)) { } // Implementation did not change.

};

std::string getStr();

int main()
{

std::string lval;

S s1(lval); // 2 copies
S s2(getStr()); // 1 move and 1 copy

}

The problem is that now we are copying the argument twice: once into the lval parameter
and then again into the String data member, d_s. Had we written the requisite overloads,
we would not be in this situation:
class S
{

String d_s;

public:
S(const std::string& s) : d_s(s) { }
S(std::string&& s) : d_s(std::move(s)) { }

};

So, unless we are absolutely certain that we will never change the implementation of our
class, designing a constructor to take a sink argument by value can be suboptimal.

Disabling NRVO

Named return value optimization (NRVO) can occur only if the expression being returned
from all paths through the function is the name of the same local variable. If we use
std::move in a return statement, we are returning the return value of another function,
i.e., std::move, and not a local variable by name, even though as developers we know that

783

lorihughes
Highlight
[set return in code font]




