
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 75 — #101

i
i

i
i

i
i

Section 1.1 C++11 Function static '11

Note that any memory that the Logger itself manages would still come from the global heap
and be recognized as memory leaks.4

In this final incarnation of a decidedly non-Meyers-Singleton pattern, we first reserve a
block of memory of sufficient size and the correct alignment for Logger using
std::aligned_storage. Next we use that storage in conjunction with placement new to
create the logger directly in that static memory. Notice that this allocation is not from the
dynamic store, so typical profiling tools will not track and will not provide a false warning
when we fail to destroy this object at program termination time. Now we can return a ref-
erence to the logger object embedded safely in static memory knowing that it will be there
until application exit.

Potential Pitfalls

static storage duration objects are not guaranteed to be initialized

Despite C++11’s guarantee that each individual function-scope static initialization will
occur at most once and before control can reach a point where the variable can be referenced,
no analogous guarantees are made of nonlocal objects of static storage duration. Absence
of this guarantee makes any interdependency in the initialization of such objects, especially
across translation units (TUs), an abundant source of insidious errors.
Objects that undergo constant initialization have no such issue: Such objects will never
be accessible at run time before having their initial values. Objects that are not constant
initialized5 will instead be zero initialized until their constructors run, which itself might
lead to undefined behavior that is not necessarily conspicuous.
As a demonstration of what can happen when we depend on the relative order of initialization
of variables at file or namespace scope used before main, consider the cyclically dependent
pair of source files, a.cpp and b.cpp:
// a.cpp:
extern int setB(int); // declaration only of setter in other TU
int *a = new int; // runtime initialization of filescope variable
int setA(int i) // Initialize a; then b.
{

*a = i; // Populate the allocated heap memory.
setB(i); // Invoke setter to populate the other one.
return 0; // Return successful status.

}

4If the global heap is to be entirely avoided, we could leverage a polymorphic-allocator implementation
such as std::pmr in C++17. We would first create a fixed-size array of memory having static storage duration.
Then we would create a static memory-allocation mechanism, e.g., std::pmr::monotonic_buffer_resource.
Next we would use placement new to construct the logger within the static memory pool using our static
allocation mechanism and supply that same mechanism to the Logger object so that it could get all its
internal memory from that static pool as well; a discussion of this topic is planned for lakos22.

5C++20 added a new keyword, constinit, that can be placed on a variable declaration to require that
the variable in question undergo constant initialization and thus can never be accessed at run time prior to
the start of its lifetime.

75

lorihughes
Inserted Text
-initialization order is not guaranteed

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
*

lorihughes
Cross-Out

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Cross-Out

lorihughes
Inserted Text
-




