
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 742 — #768

i
i

i
i

i
i

Rvalue References Chapter 2 Conditionally Safe Features

Importantly, knowing that the semantics of move operations can be fully defined in terms
of their corresponding copy operations makes them easy to understand. What’s more, these
newly added move-semantic operations can be tested using unit tests that are modi-
fied only slightly from their existing copy-semantic counterparts; see Potential Pitfalls —
Making a noncopyable type movable without just cause on page 788.
Repurposing internal resources from an object that no longer needs them can lead to faster
copy-like operations, especially when dynamic allocation and deallocation of memory is
involved. Countervailing considerations, such as locality of reference, can, however, sug-
gest that preferring move operations to copy operations might, in some circumstances, be
contraindicated for overall optimal runtime performance, especially at scale.17

Properly implementing move operations that, for expiring objects, act like optimized copy
operations will depend on the specifics of how we chose to implement a type, e.g., an object
that (1) is written to manage its own resources explicitly (see Creating a low-level value-
semantic type (VST) below) or (2) delegates resource management to its subobjects (see
Description — Special member function generation on page 732).

Creating a low-level value-semantic type (VST) Often, we want to create a user-defined
type (UDT) that represents what we’ll call a platonic value, i.e., one whose meaning is
independent of its representation within the current process. When implemented properly,
we refer to such a type as a value-semantic type (VST). Although there are some
cases where a VST might be implemented as a simple aggregate type (see Description
— Special member function generation on page 732), there are other cases where a VST
might, instead, manage its internal resources directly. The latter explicit implementation of
a VST is the subject of this subsection.
For illustration purposes, consider a simple VST, class String, that maintains, as an object
invariant, a null-terminated string value; i.e., this string class explicitly does not support
having a null pointer value. In addition to a value constructor and a single const member
function to access the value of the object, each of the four C++03 special member functions
— default constructor, copy constructor, assignment operator, and destructor — are
user provided, i.e., defined explicitly by the programmer. To keep this example focused,
however, we will not store separately the length of the string, and we’ll omit the notion
of excess capacity altogether, leaving just a single nonstatic const char* data member,
d_str_p, to hold the address of the dynamically allocated memory:
class String { const char* d_str_p; /*...*/ }; // null-terminated-string manager

One practical aspect that we preserve is that default-constructed container types — going
back to C++03 — are well advised, on purely performance grounds, never to pre-allocate
resources, lest creating a large array of such empty containers be impracticably runtime-
intensive to construct:

17halpern21c

742

lorihughes
Pencil
[transpose. Then set nonstatic data member in gloss font, keeping static in code font.]




