
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 74 — #100

i
i

i
i

i
i

Function static '11 Chapter 1 Safe Features

idiom (see Section 2.1.“Inheriting Ctors” on page 535), corresponding to each singleton
use:
class PrimaryCamera
{
private:

Camera& d_camera_r;
PrimaryCamera(Camera& camera) // implicit constructor
: d_camera_r(camera) { }

public:
static PrimaryCamera getInstance()
{

static Camera localCamera{/*...*/};
return localCamera;

}
};

With this design, adding a second and even a third singleton that is able to reuse the
underlying Camera mechanism is facilitated.
Although this function-scope-static approach provides stronger guarantees than the file-
scope-static one, it does have its limitations. In particular, when one global facility object,
such as a logger, is used in the destructor of another function-scope static object, the logger
object might possibly have already been destroyed when it is used.3 One approach is to
construct the logger object by explicitly allocating it and never deleting it:
Logger& getLogger()
{

static Logger& l = *new Logger("log.txt"); // dynamically allocated
return l; // Return a reference to the logger (on the heap).

}

A distinct advantage of this approach is that once an object is created, it never goes away
before the process ends. The disadvantage is that, for many classic and current profiling tools
(e.g., Purify, Coverity), this intentionally never-freed dynamic allocation is indistinguishable
from a memory leak. The ultimate workaround is to create the object itself in static
memory, in an appropriately sized and aligned region of memory:
#include <new> // placement new

Logger& getLogger()
{

static std::aligned_storage<sizeof(Logger), alignof(Logger)>::type buf;
static Logger& logger = *new(&buf) Logger("log.txt"); // allocate in place
return logger;

}

3An amusing workaround, the so-called Phoenix Singleton, is proposed in alexandrescu01, section 6.6,
“Addressing the Dead Reference Problem (I): The Phoenix Singleton,” pp. 137–139.

74

lorihughes
Inserted Text
 // braced init of `localCamera`

lorihughes
Cross-Out

lorihughes
Inserted Text
Constructors

