
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 733 — #759

i
i

i
i

i
i

Section 2.1 C++11 Rvalue References

struct S1 { S1(S1&&); }; // move constructor
struct S2 { S2(const S2&&); }; // " "
struct S3 { S3(S3&&, int i = 0); }; // " "
struct S4 { S4(S4&&, int i); }; // not a move constructor
struct S5 { S5(int&&); }; // " " " "
struct S6 { S6(S6&); }; // " " " "

2. A move-assignment operator for a type X is a nonstatic, nontemplate member function
named operator= with exactly one parameter that is a cv-qualified rvalue reference
to X, i.e., either X&&, const X&&, volatile X&&, or const volatile X&&. Any return
type and value is valid for a move-assignment operator, but the common convention
is to have a return type of X& and to return *this.

Just as with other special member functions, when not declared explicitly, it is possible for
the move constructor and move-assignment operator to be declared implicitly10 for a class,
or struct, X.

• Supplying any of a user-declared copy or move constructor, copy or move assignment
operator, or destructor will suppress the implicit generation of both move operations.

• The default move constructor will have the function prototype X::X(X&&). The
default move-assignment operator will have the signature X& operator=(X&&).

• The exception specification and triviality of both move operations are determined
by the exception specification and triviality of the corresponding operation on all base
classes and nonstatic data members of X.

• The default implementation will apply the corresponding operation to each base class
and nonstatic data member.

The rules governing special-member-function generation for a union are similar to those for a
class or struct with the added proviso that any of the union’s six special member functions
that are not declared explicitly will be deleted (see Section 1.1.“Deleted Functions” on
page 53) if they correspond to a nontrivial special member function of one or more of the
union’s nonstatic data members:

struct S { S(S&&); }; // S has a user-provided (nontrivial) move ctor.
union U { S s; }; // U's implicitly declared move ctor is deleted.

Note that a trivial move operation and a trivial copy operation on a union have the
same behavior: a bitwise copy. For a much more detailed discussion of both unions and
triviality, see Section 3.1.“union ’11” on page 1174 and Section 2.1.“Generalized PODs ’11”
on page 401.

10For more on the implicit generation of special member functions, see Section 1.1.“Defaulted Functions”
on page 33.

733

lorihughes
Highlight
[set static in code font]

lorihughes
Highlight
[set the whole term in gloss font and set static in code font]

lorihughes
Highlight
[set the whole term in gloss font and set static in code font]

lorihughes
Highlight
[set the whole term in gloss font and set static in code font]

lorihughes
Inserted Text
-

lorihughes
Inserted Text
-




