
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 73 — #99

i
i

i
i

i
i

Section 1.1 C++11 Function static '11

As discussed in Description on page 68, the augmentation of a thread-safety guarantee for
the runtime initialization of function-scope static objects in C++11 minimizes the effort
required to create a thread-safe singleton. Note that, prior to C++11, the simple function-
scope static implementation would not be safe if concurrent threads were trying to initialize
the logger; see Appendix — C++03 double-checked-lock pattern on page 81.
The Meyers Singleton is also seen in a slightly different form where the singleton type’s
constructor is made private to prevent more than just the one singleton object from being
created:
class Logger
{
private:

Logger(const char* logFilePath); // configures the singleton
~Logger(); // suppresses copy construction too

public:
static Logger& getInstance()
{

static Logger localLogger("log.txt");
return localLogger;

}
};

This variant of the function-scope-static singleton pattern prevents users from manually
creating rogue Logger objects; the only way to get one is to invoke the logger’s static
Logger::getInstance() member function:
void client()
{

Logger::getInstance() << "Hi"; // OK
Logger myLogger("myLog.txt"); // Error, Logger constructor is private.

}

This formulation of the singleton pattern, however, conflates the type of the singleton object
with its use and purpose as a singleton. Once we find a use of a singleton object, finding
another and perhaps even a third is not uncommon.
Consider, for example, an application on an early model of mobile phone where we want
to refer to the phone’s camera. Let’s presume that a Camera class is a fairly involved and
sophisticated mechanism. Initially we use the variant of the Meyers Singleton pattern where
at most one Camera object can be present in the entire program. The next generation of
the phone, however, turns out to have more than one camera, say, a front Camera and a
back Camera. Our brittle design doesn’t admit the dual-singleton use of the same fundamen-
tal Camera type. A more finely factored solution would be to implement the Camera type
separately and then to provide a thin wrapper, e.g., perhaps using the strong-typedef

73

lorihughes
Cross-Out

lorihughes
Inserted Text
disable

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
Logger(const Logger&)




