
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 72 — #98

i
i

i
i

i
i

Function static '11 Chapter 1 Safe Features

The interface in the libcomp.h file comprises the definition of S along with the declaration of
an accessor function, getGlobalS. Code outside the libcomp.cpp file can access the singleton
object globalS only by calling the free function getGlobalS(). Now consider the main.cpp
file in the example below, which implements main and also makes use of globalS prior to
entering main:
// main.cpp:
#include <cassert> // standard C assert macro
#include <libcomp.h> // getGlobalS()

bool globalInitFlag = getGlobalS().isInitialized();

int main()
{

assert(globalInitFlag); // Bug, or at least potentially so
return 0;

}

Depending on the compiler or the link line, the call initializing globalInitFlag might occur
and return prior to the initialization of globalS. C++ does not guarantee that objects at file
or namespace scope in separate translation units will be initialized just because a function
located within that translation unit happens to be called.
An effective pattern for helping to ensure that a nonlocal object is initialized before it is used
from a separate translation unit — especially when that use might occur prior to entering
main — is simply to move the static object from file or namespace scope to the scope of
the function accessing it, making it a function-scope static instead:
S& getGlobalS() // access into this translation unit
{

static S globalS; // singleton is now functionscope static
return globalS;

}

Commonly known as the Meyers Singleton for author Scott Meyers who popularized
it, this pattern ensures that the singleton object will necessarily be initialized on the first
call to the accessor function that envelopes it, irrespective of when and where that call
is made. Moreover, that singleton object will also live past the end of main. The Meyers
Singleton pattern also gives us a chance to catch and respond to exceptions thrown when
constructing the static object, rather than immediately terminating the program, as would
be the case if declared as a static global variable. Much more importantly, however, since
C++11, the Meyers Singleton pattern automatically inherits the benefits of effortless race-
free initialization of reusable program-wide singleton objects. The Meyers Singleton can be
safely used both in the programs where the singleton initialization might happen before
main and those where it might happen after additional threads have already been started.

72

lorihughes
Inserted Text
Despite the original Standard claiming otherwise, 




