“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 706 — #732

Range for Chapter 2 Conditionally Safe Features

Using the zipIterator, all three containers can be traversed using a single range-based
for loop:

void addVectors2(std::vector<int>& result,
const std::vector<int>& a,
const std::vector<int>& b)

{
assert(a.size() == b.size());
result.resize(a.size());
for (std::tuple<int, int, int&> elems : makeZipRange(a, b, result))
{
std::get<2>(elems) = std::get<0>(elems) + std::get<i>(elems);
}
}

Each iteration, instead of yielding a single element, yields an std: : tuple of elements result-
ing from the traversal of multiple ranges simultaneously. To be used, the elements must be
unpacked from the std: :tuple using std::get. Zip iterators become much more attractive
in C4++17 with the advent of structured bindings, which allow multiple loop variables to be
declared at once, without the need to directly unpack the std: : tuples. The implementation
and usage of ZipRange above is just a rough sketch: The full design and implementation of
zip iterators and zip ranges are beyond the scope of this section.

Adapters are required for many tasks

In the usage examples above, we have seen a number of adapters, e.g., to traverse subranges,
to traverse a container in reverse, to generate sequential values, and to iterate over multiple
ranges at once. None of these adapters would be required for a classic for loop, which for a
one-off situation might express the solution more simply. On the other hand, the adapters
that we would create to make range-based for loops usable in more situations can lead to
the development of a reusable library of adapters. Using the valueGenerator class from
Range generators, for example, produces simpler and more expressive code than using a
classic for loop would.!!

No support for sentinel iterator types

For a given range expression, _ range, begin(__range) and end(__range) must return the
same type to be usable with a range-based for loop. This limitation is problematic for
ranges of indeterminate length, where the condition for ending a loop is not determined by
comparing two iterators. For example, in the RandomIntSequence example (see Use Cases
— Range generators on page 687), the end iterator for the infinite random sequence holds a
null pointer and is never used, not even within operator!=. It would be more efficient and

1 The Standard’s Ranges Library, introduced in C++20, provides a sophisticated algebra for working
with and adapting ranges.

706


lorihughes
Highlight
[set in gloss font]




