
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 703 — #729

i
i

i
i

i
i

Section 2.1 C++11 Range for

thus does not risk giving programmers the false belief that they are modifying the
container.

10. Loop with const auto has the same behavior for both the IntVec and BoolVec instan-
tiations. That mechanism is the same behavior as for loop with auto (item 4) except
that, because v is const, neither instantiation can modify the container.

11. Loop with const auto& also works for both instantiations. For the IntVec case, the
result of *__begin is bound directly to v. For the BoolVec case, v is deduced to be a
const reference to the proxy type; *__begin produces a temporary variable of the
proxy type, which is then bound to v. Lifetime extension keeps the proxy alive. In
most contexts, a const proxy reference is an effective stand-in for a const bool&.

12. Loop with const auto&& fails to compile for IntVec but succeeds for BoolVec. The
error with IntVec occurs because const auto&& is always a const rvalue reference
(not a forwarding reference) and cannot be bound to the lvalue reference, *__begin.
For BoolVec, the mechanism is identical to loop with const auto& (item 11) except
that loop with const auto& (item 11) binds the temporary object to an lvalue refer-
ence, whereas loop with const auto&& (item 12) uses an rvalue reference. When the
references are const, however, there is little practical differences between them.

Note that loop with auto, loop with auto&&, loop with const auto, loop with const auto&,
and loop with const auto&& (items 4, 6, 10, 11, and 12) in the BoolVec instantiations bind a
reference to a temporary proxy reference object, so taking the address of v in these situations
is likely not to produce useful results. Additionally, loop with T&&, loop with const T&, and
loop with const T&& (items 3, 8, and 9) bind v to a temporary bool. Users must be mindful
of the lifetime of these temporary objects (a single iteration of the loop) and not allow the
address of v to escape the loop.
Proxy objects emulating references to nonclass elements within a container are surprisingly
effective, but their limitations are exposed when they are bound to references. In generic
code, as a rule of thumb, const auto& is the safest way to declare a read-only loop variable
if a reference proxy might be in use, while auto&& will give the most consistent results for
a loop that modifies its container. Similar issues, unrelated to range-based for loops, occur
when passing a proxy reference to a function taking a reference argument.

Annoyances

No access to the state of the iteration

When traversing a range with a classic for loop, the loop variable is typically an iterator
or array index. Within the loop, we can modify that variable to repeat or skip iterations.
Similarly, the loop-termination condition is usually accessible so that it is possible to, for
example, insert or remove elements and then recompute the condition:

703

lorihughes
Cross-Out




