
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 70 — #96

i
i

i
i

i
i

Function static '11 Chapter 1 Safe Features

Here we have an example of the “Singleton pattern”2 being used to create the shared
Logger instance and provide access to it through the getLogger() function. The static
local instance of Logger, localLogger, will be initialized exactly once and then destroyed
after normal program termination. In C++03, it would not be safe to call this func-
tion concurrently from multiple threads. Conversely, C++11 guarantees that the initial-
ization of localLogger will happen exactly once even when multiple threads call getLogger
concurrently.

Multithreaded contexts

The C++11 Standard Library provides several utilities and abstractions related to multi-
threading. The std::thread class is a portable wrapper for a platform-specific thread han-
dle provided by the operating system. When constructing an std::thread object with a
callable object, a new thread invoking that callable object will be spawned. Prior to
destroying such std::thread objects, invoking the join member function on the thread
object is necessary and will block until the background thread of execution completes
invoking its callable object.
This threading facility from the Standard Library can be used with our earlier example in
Logger example on page 69 to concurrently attempt to access the getLogger function:
#include <thread> // std::thread

void useLogger() { getLogger() << "example"; } // concurrently called function

int main()
{

std::thread t0(&useLogger);
std::thread t1(&useLogger);

// Spawn two new threads, each of which invokes useLogger.

// ...

t0.join(); // Wait for t0 to complete execution.
t1.join(); // Wait for t1 to complete execution.

return 0;
}

Such use prior to the C++11 thread-safety guarantees, with pre-C++11 threading libraries,
could have led to a data race during the initialization of localLogger, which was defined
as a local static object in getLogger. This undefined behavior might have resulted in
invoking the constructor of localLogger multiple times, returning from localLogger before

2gamma95, Chapter 3, section “Singleton,” pp. 127–134

70

lorihughes
Cross-Out

lorihughes
Inserted Text
during

lorihughes
Inserted Text
 and that no thread will continue execution past the definition of `localLogger` until that single initialization is complete

lorihughes
Cross-Out

lorihughes
Inserted Text
or `detach`




