
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 684 — #710

i
i

i
i

i
i

Range for Chapter 2 Conditionally Safe Features

extern double data[]; // array of unknown size

void f2()
{

for (double& d : data) // Error, data is an incomplete type.
{

// ...
}

}

double data[10] = { /*...*/ }; // too late to make the above compile

The above example would compile if data were declared having a size, e.g.,
extern double data[10], as that would be a complete type and provide sufficient infor-
mation to traverse the array. The definition of data in the example is complete but is not
visible at the point that the loop is compiled.
An std::initializer_list is typically used to initialize an array or container using braced
initialization; see Section 2.1.“Braced Init” on page 215. The std::initializer_list
template does, however, provide its own begin and end member functions and is, therefore,
directly usable as the range-expression in a range-based for loop:
#include <initializer_list> // std::initializer_list

void f3()
{

for (double v : {1.9, 2.8, 4.7, 7.6, 11.5, 16.4, 22.3, 29.2, 37.1, 46.0})
{

// ...
}

}

The example above shows how a series of double values can be embedded right within the
loop header.

Use Cases

Iterating over all elements of a container

The motivating use case for this feature is looping over the elements in a container:
#include <list> // std::list

void process(int* p);

void f1()
{

std::list<int> aList{ 1, 2, 4, 7, 11, 16, 22, 29, 37, 46 };

684

lorihughes
Cross-Out
[delete hyphen; allow space]




