
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 682 — #708

i
i

i
i

i
i

Range for Chapter 2 Conditionally Safe Features

#include <vector> // std::vector

void f1(std::vector<int>& vec)
{

const std::vector<int>& cvec = vec;

for (auto& i : cvec)
{

i = 0; // Error, i is a reference to const int.
}

for (int j : vec)
{

j = 0; // Bug, j is a loop­local variable; vec is not modified.
}

for (int& k : vec)
{

k = 0; // OK, set element of vec to 0.
}

}

Since cvec is const, the element type returned by *begin(cvec) is const int&. Thus, i is
deduced as const int&, making invalid any attempt to modify an element through i. The
second loop is valid C++11 code but has a subtle defect: j is not a reference — it contains a
copy of the current element in the vector — so modifying j has no effect on the vector. The
third loop correctly sets all of the elements of vec to zero; the loop variable k is a reference
to the current element, so setting it to zero modifies the original vector.
Note that the for-range declaration must define a new variable; unlike a traditional for loop,
it cannot name an existing variable already in scope:
void f2(std::vector<int>& vec)
{

int m;
for (m : vec) { /*...*/ } // Error, m does not define a variable.
for (int& m : vec) { /*...*/ } // OK, loop m hides function­scope m.

}

The statement that makes up the loop body can contain anything that is valid within a
traditional for loop body. In particular, a break statement will exit the loop immediately,
and a continue statement will skip to the next iteration.
Applying this transformation to a range-based for loop traversing a vector of string
elements, we can see how the iterator idiom is hooked into for the traversal:

682

lorihughes
Cross-Out

lorihughes
Inserted Text
cvec.begin()

