
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 68 — #94

i
i

i
i

i
i

Function static '11 Chapter 1 Safe Features

Thread-Safe Function-Scope static Variables

Initialization of function-scope static objects is now guaranteed to be free of data races in
the presence of multiple concurrent threads.

Description

A variable declared at function, a.k.a. local, scope has automatic storage duration, except
when it is marked static, in which case it has static storage duration. Variables having
automatic storage duration are allocated on the stack each time the function is invoked and
initialized when that invocation’s flow of control passes through the definition of that
object. In contrast, variables with static storage duration, e.g., iLocal, defined at function
scope, e.g., f, are instead allocated once per program and are initialized only the first time
the flow of control passes through the definition of that object:

#include <cassert> // standard C assert macro

int f(int i) // function returning the first argument with which it is called
{

static int iLocal = i; // Object is initialized only once, on the first call.
return iLocal; // The same iLocal value is returned on every call.

}

int main()
{

int a = f(10); assert(a == 10); // Initialize and return iLocal.
int b = f(20); assert(b == 10); // Return iLocal.
int c = f(30); assert(c == 10); // Return iLocal.

return 0;
}

In the simple example above, the function, f, initializes its static object, iLocal, with its
argument, i, only the first time it is called and then always returns the same value, e.g., 10.
Hence, when that function is called repeatedly with distinct arguments to initialize the a, b,
and c variables, all three of them are initialized to the same value, 10, supplied to the first
invocation of f. Although the function-scope static object, iLocal, was created after main
was entered, it will not be destroyed until after main exits.

Concurrent initialization

Historically, initialization of function-scope static storage duration objects was not guar-
anteed to be safe in a multithreading context because it was subject to data races

68

lorihughes
Inserted Text
program 

lorihughes
Inserted Text
or `thread_local`

lorihughes
Inserted Text
the corresponding 




