
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 677 — #703

i
i

i
i

i
i

Section 2.1 C++11 Opaque enums

use of its individual enumerators, and (2) typical components consist of just a .h/.cpp pair,
i.e., exactly one .h file and usually just one .cpp file.10

Inciting local enumeration declarations: An attractive nuisance

Whenever we, as library component authors, provide the complete definition of an enumer-
ation with a fixed underlying type and fail to provide a corresponding forwarding header
having just the opaque declaration, we confront our clients with the difficult decision of
whether to needlessly compile-time couple11 themselves and/or their clients with the details
of the enumerator list or to make the dubious choice to unilaterally redeclare that enumer-
ation locally.
The problems associated with local declarations of data whose types are maintained in
separate translation units is not limited to enumerations; see Redeclaring an externally
defined enumeration locally on page 675. The maintainability pitfall associated with opaque
enumerations, however, is qualitatively more severe than for other external-linkage types,
such as a global int, in that the ability to elide the enumerators amounts to an attractive
nuisance wherein a client — wanting to do so and having access to only a single header
containing the complete definition — might be persuaded into declaring the enumeration
locally!
Ensuring that library components that define enumerations whose enumerators can be elided
also consistently provide a second forwarding header file containing the opaque declaration
of each such enumeration would be one generally applicable way to sidestep this maintenance
burden; see Use Cases — Dual-Access: Insulating some external clients from the enumerator
list on page 665. Note that the attractive nuisance potentially exists even when the primary
intent of the component is not to make the enumeration generally available.12

Annoyances

Opaque enumerations are not completely type safe

Making an enumeration opaque does not stop it from being used to create an object that is
initialized opaquely to a zero value and then subsequently used (e.g., in a function call):
enum Bozo : int; // forward declaration of enumeration Bozo
void f(Bozo); // forward declaration of function f

void g()
{

10lakos20, sections 2.2.11–2.2.13, pp. 280–281
11For a complete real-world example of how compile-time coupling can delay a “hot fix” by weeks, not

just hours, see lakos20, section 3.10.5, pp. 783–789.
12wight

677

lorihughes
Inserted Text
r


