“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 672 — #698

Opaque enums Chapter 2 Conditionally Safe Features
// ...create and register other clients for interest...
engine.run(); // Cede control to g's event loop until complete.
return O;
}

The implementation of myCallback, in the example below, is then free to reregister interest
in the same event, save the cookie elsewhere to reregister at a later time, or complete its task
and let the callbackEngine take care of properly cleaning up all now unnecessary resources:

void myCallback(const EventData& event,
CallbackEngine* engine,
const CallbackData& cookie)
{
int status = EventProcessor::processEvent(event);
if (status > @) // Status is nonzero; continue interest in event now.
{
engine->reregisterInterest(cookie);
}
else if (status < 0) // Negative status indicates EventProcessor wants
// to reregister later.
{
EventProcessor::storeCallback(engine, cookie);
// Call reregisterInterest later.
}
// Return flow of control to the CallbackEngine that invoked this
// callback. 1If status was zero, then this callback should be cleaned
// up properly with minimal fuss and no leaks.
}

What makes use of the opaque enumeration here especially apt is that the internal data
structures maintained by the CallbackEngine might be subtly interrelated, and any knowl-
edge of a client’s relationship to those data structures that can be maintained through call-
backs is going to reduce the amount of lookups and synchronization that would be needed
to correctly reregister a client without that information. The otherwise wide contract on
reregisterInterest means that clients have no need themselves to directly know anything
about the actual values of the State they might be in. More notably, a component like this
is likely to be heavily reused across a large codebase, and being able to maintain it while
minimizing the need for clients to recompile can be a huge boon to deployment times.

To see what is involved, we can consider the business end of the CallbackEngine implemen-
tation and an outline of what a single-threaded implementation might involve:

672


lorihughes
Inserted Text
ngine




