
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 67 — #93

i
i

i
i

i
i

Section 1.1 C++11 explicit Operators

serves to illustrate how conversion operators might be both ambiguous and insufficient at
the same time. Consider that (1) many mathematical operations on a 2-D integral point
might return a double (e.g., magnitude, angle) and (2) we might want to represent the
same information but in different units (e.g., angleInDegrees, angleInRadians). Another
valid design decision would be to return an object of user-defined type, say, Angle, that
captures the amplitude and provides named accessory to the different units (e.g., asDegrees,
asRadians).
Rather than employing any conversion operator (explicit or otherwise), consider instead
providing a named function, which (1) is automatically explicit and (2) affords both flexi-
bility in writing and clarity in reading for a variety of domain-specific functions — now and
in the future — that might well have had overlapping return types:
class Point // only explicitly convertible and from only an int
{

int d_x, d_y;

public:
explicit Point(int x = 0, int y = 0); // explicit converting constructor
// ...
double magnitude() const; // Return distance from origin as a double.

};

Note that defining nonprimitive functionality, like magnitude, in a separate utility at a
higher level in the physical hierarchy, e.g., PointUtil::magnitude(const Point& p), might
be better still.3

3For more on separating out nonprimitive functionality, see lakos20, section 3.2.7, “Not Just Minimal,
Primitive: The Utility struct,” through section 3.2.8, “Concluding Example: An Encapsulating Polygon
Interface,” pp. 529–552.

67

lorihughes
Cross-Out

lorihughes
Inserted Text
s

lorihughes
Cross-Out

lorihughes
Inserted Text
requires explicit invocation 
[no code font]




