
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 612 — #638

i
i

i
i

i
i

Lambdas Chapter 2 Conditionally Safe Features

class Class1
{

int d_value;

void mf1()
{

Class1& self = *this;
auto c1 = [self]{ return self.d_value; };

}
};

In C++14, it is possible to achieve the same effect in a terser manner using a lambda capture
expression [self = *this] (see Section 2.2.“Lambda Captures” on page 986).

Confusing mix of immediate and deferred-execution code

The main selling point of lambda expressions — i.e., the ability to define a function object
at the point of use — can sometimes be a liability. The code within a lambda body is
typically not executed immediately but is deferred until some other piece of code, e.g., an
algorithm, invokes it as a callback. The code that is immediately executed and the code
whose invocation is deferred are visually intermixed in a way that could confuse a future
maintainer. For example, let’s look at a simplified excerpt from an earlier use case, Use Cases
— Use with std::function on page 601.
#include <cstdlib> // std::strtol
#include <functional> // std::function
#include <string> // std::string
#include <vector> // std::vector

using Instruction = std::function<long*(long* sp)>;

std::vector<Instruction> instructionStream;

std::string nextToken(); // Read the next token.
char tokenOp(const std::string& token); // operator for token

void readInstructions()
{

std::string token;
Instruction nextInstr;
while (!(token = nextToken()).empty())
{

switch (tokenOp(token))
{

// ... more cases
case '+':
{

// + operation

612

lorihughes
Inserted Text
Init-




