
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 61 — #87

i
i

i
i

i
i

Section 1.1 C++11 explicit Operators

Explicit Conversion Operators

Ensure that a user-defined type is convertible to another type only in contexts where the
conversion is made obvious in the code.

Description

Though sometimes desirable, implicit conversions achieved via user-defined conversion func-
tions — either converting constructors accepting a single argument or conversion oper-
ators — can also be problematic, especially when the conversion involves a commonly used
type (e.g., int or double):
class Point // implicitly convertible from an int or to a double
{

int d_x, d_y;

public:
Point(int x = 0, int y = 0); // default, conversion, and value constructor
// ...
operator double() const; // Return distance from origin as a double.

};

Using a conversion operator to calculate distance from the origin in this unrealistically
simple Point example is for didactic purposes only. In practice, we would typically use a
named function for this purpose; see Potential Pitfalls — Sometimes a named function is
better on page 66.
As ever, calling a function that takes a Point but accidentally passing an int can lead to
surprises:
void g0(Point p); // arbitrary function taking a Point object by value
void g1(const Point& p); // arbitrary function taking a Point by const reference

void f1(int i)
{

g0(i); // oops, called g0 with Point(i, 0) by mistake
g1(i); // oops, called g1 with Point(i, 0) by mistake

}

This problem could have been solved even in C++03 by declaring the constructor to be
explicit:
explicit Point(int x = 0, int y = 0); // explicit converting constructor

61

lorihughes
Inserted Text
s

lorihughes
Cross-Out




