
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 609 — #635

i
i

i
i

i
i

Section 2.1 C++11 Lambdas

Overuse

The ability to write functions, especially functions with state, at the point where they are
needed and without much of the syntactic overhead that accompanies normal functions and
class methods, can potentially lead to a style of code that uses “lambdas everywhere,” losing
the abstraction and well-documented interfaces of separate functions. Lambda expressions
are not intended for large-scale reuse. Sprinkling lambda expressions throughout the code
can result in less well-factored, less maintainable code.

Mixing captured and noncaptured variables

A lambda body can access both automatic-duration local variables that were captured from
the enclosing block and static-duration variables that need not and cannot be captured.
Variables captured by copy are “frozen” at the point of capture and cannot be changed except
by the lambda body (if mutable), whereas static variables can be changed independent of
the lambda expression. This difference is often useful but can cause confusion when reasoning
about a lambda expression:

void f1()
{

static int a;
int b;

a = 5;
b = 6;

auto c1 = [b]{ return a + b; }; // OK, b is captured by copy.
assert(11 == c1()); // OK, a == 5 and b == 6.
++b; // Increment *primary* b.
assert(11 == c1()); // OK, captured b did not change.
++a; // Increment staticduration a.
assert(11 == c1()); // Fires, a == 6 and captured b == 6

}

When the closure object for c1 is created, the captured b value is frozen within the lambda
body. Changing the primary b has no effect. However, a is not captured, nor is it allowed
to be. As a result, there is only one a variable, and modifying that variable outside of the
lambda body changes the result of invoking the call operator. In C++14, such lambda-
capture expressions can be used to effectively capture a copy of such nonlocal variables if it
is desired; see Section 2.2.“Lambda Captures” on page 986.

609

lorihughes
Inserted Text
Init-




