
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 602 — #628

i
i

i
i

i
i

Lambdas Chapter 2 Conditionally Safe Features

// push integer literal
long v = std::strtol(token.c_str(), nullptr, 10);
nextInstr = [v](long* sp){ *sp++ = v; return sp; };
break;

}
case '+':
{

// + operation: pop 2 longs and push their sum
nextInstr = [](long* sp){

long v1 = *sp;
long v2 = *sp;
*sp++ = v1 + v2;
return sp;

};
break;

}
// ... more cases

}

instructionStream.push_back(nextInstr);
}

}

The Instruction type alias is an std::function that can hold, through a process called
type erasure, any invocable object that takes a long* argument and returns a long*
result. The readInstructions function reads successive string tokens and switches on the
operation represented by the token. If the operation is i, then the token is an integer
literal. The string token is converted into a long value, v, which is captured in a lambda
expression. The resulting closure object is stored in the nextInstr variable; when called, it
will push v onto the stack. Note that the nextInstr variable outlives the primary v variable,
but, because v was captured by copy, the captured variable’s lifetime is the same as the
closure object’s. If the next operation is +, nextInstr is set to the closure object of an
entirely different lambda expression, one that captures nothing and whose call operator
pops two values from the stack and pushes their sum back onto the stack.
After the switch statement, the current value of nextInstr is appended to the instruction
stream. Note that, although each closure type is different, they all can be stored in an
Instruction object because the prototype for their call operator matches the prototype
specified in the instantiation of std::function. The nextInstr variable can be created
empty, assigned from the value of a lambda expression, and then later reassigned from the
value of a different lambda expression. This flexibility makes std::function and lambda
expressions a potent combination.
One specific use of std::function worth noting is to return a lambda expression from a
nontemplate function:

602

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Sticky Note
change all long to int

lorihughes
Sticky Note
change long in text to int 3x

lorihughes
Cross-Out

lorihughes
Inserted Text
atoi

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
ints

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Inserted Text
n

lorihughes
Inserted Text
n

lorihughes
Inserted Text
n

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Cross-Out

lorihughes
Inserted Text
function that is not a template

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes




