
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 601 — #627

i
i

i
i

i
i

Section 2.1 C++11 Lambdas

The value of largestShortPrime must be set at initialization time because it is a const
variable with static storage duration. The loop inside the lambda expression computes the
desired value, using a local variable, v, and a for loop. Note that the call operator for
the resulting closure object is immediately invoked via the () argument list at the end
of the lambda expression; the closure object is never stored in a named variable and goes
out of scope as soon as the full expression is completely evaluated. This computation would
formerly have been possible only by creating a single-use named function.

Use with std::function

As convenient as lambda expressions are for passing functors to algorithm templates, each
closure having an unnamed and distinct typemakes it difficult to use them outside of a
generic context. The C++11 Standard Library class template, std::function, bridges this
gap (at a cost of runtime overhead) by providing a polymorphic invocable type that can
be constructed from any type with a compatible invocation prototype, including but not
limited to closure types.
As an example, consider a simple interpreter for a postfix input language that stores a
sequence of instructions in an std::vector. Each instruction can be of a different type,
but they all accept the current stack pointer as an argument and return the new stack
pointer as a result. Each instruction is typically a small operation, ideally suited for being
expressed as a lambda expression:
#include <cstdlib> // std::strtol
#include <functional> // std::function
#include <string> // std::string
#include <vector> // std::vector

using Instruction = std::function<long*(long* sp)>;

std::vector<Instruction> instructionStream;

std::string nextToken(); // Read the next token.
char tokenOp(const std::string& token); // operator for token

void readInstructions()
{

std::string token;
Instruction nextInstr;
while (!(token = nextToken()).empty())
{

switch (tokenOp(token))
{

case 'i':
{

601

lorihughes
Cross-Out

lorihughes
Inserted Text
int

lorihughes
Cross-Out

lorihughes
Inserted Text
int

lorihughes
Cross-Out

lorihughes
Inserted Text
atoi

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Inserted Text
 
[add space]

lorihughes
Sticky Note
Marked set by lorihughes




