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Section 2.1 C++11 Lambdas

The value of largestShortPrime must be set at initialization time because it is a const
variable with static storage duration. The loop inside the lambda expression computes the
desired value, using a local variable, v, and a for loop. Note that the call operator for
the resulting closure object is immediately invoked via the () argument list at the end
of the lambda expression; the closure object is never stored in a named variable and goes
out of scope as soon as the full expression is completely evaluated. This computation would
formerly have been possible only by creating a single-use named function.

Use with std::function

As convenient as lambda expressions are for passing functors to algorithm templates, each
closure having an unnamed and distinct typemakes it difficult to use them outside of a
generic context. The C++11 Standard Library class template, std::function, bridges this
gap (at a cost of runtime overhead) by providing a polymorphic invocable type that can
be constructed from any type with a compatible invocation prototype, including but not
limited to closure types.
As an example, consider a simple interpreter for a postfix input language that stores a
sequence of instructions in an std::vector. Each instruction can be of a different type,
but they all accept the current stack pointer as an argument and return the new stack
pointer as a result. Each instruction is typically a small operation, ideally suited for being
expressed as a lambda expression:
#include <cstdlib> // std::strtol
#include <functional> // std::function
#include <string> // std::string
#include <vector> // std::vector

using Instruction = std::function<long*(long* sp)>;

std::vector<Instruction> instructionStream;

std::string nextToken(); // Read the next token.
char tokenOp(const std::string& token); // operator for token

void readInstructions()
{

std::string token;
Instruction nextInstr;
while (!(token = nextToken()).empty())
{

switch (tokenOp(token))
{

case 'i':
{
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