“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 600 — #0626

Lambdas Chapter 2 Conditionally Safe Features

void processData(std::vector<double>& data)

{
double beta = 0.0;
double const coef = 7.45e-4;
std::mutex m;
parallel foreach(data.begin(), data.end(), [&](double e) mutable
{
if (e < 1.0)
{
/7 ...
}
else
{
/7.
}
1)
}

The parallel foreach algorithm is intended to act like a for loop except that all of the
elements in the input range might potentially be processed in parallel. By inserting
the “body” of this “parallel for loop” directly into the call to parallel_foreach, the result-
ing loop looks and feels a lot like a built-in control construct. Note that the capture default
is capture by reference and will result in all of the iterations sharing the outer function’s
call frame, including, e.g., the mutex variable, m, used to prevent data races. Note that
capture by copy is often preferred to capture by reference in parallel computations to
deliberately avoid sharing. If an asynchronous computation might outlive its caller, then
using capture by copy is a must for avoiding dangling references; see Potential Pitfalls —
Dangling references on page 607.

Variables and control constructs in expressions

In situations where a single expression is required — e.g., member-initializers, initializers
for const variables, and so on — an immediately evaluated lambda expression allows that
expression to include local variables and control constructs such as loops:

#include <climits> // SHRT_MAX

bool isPrime(leng i);

// Return true if i is a prime number.

const short largestShortPrime = []{
for (short v = SHRT_MAX; ; v -= 2) {
if (isPrime(v)) return v;
}
Y0

600


lorihughes
Cross-Out

lorihughes
Inserted Text
int

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes




