
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 59 — #85

i
i

i
i

i
i

Section 1.1 C++11 Deleted Functions

Let’s now suppose it is our intention to suppress generation of the default constructor, and
to make our intention clear, we elect to explicitly declare and delete it:
struct S2 // Implicit declaration of the default constructor is suppressed.
{

S2() = delete; // explicit declaration of inaccessible default constructor
S2(int); // explicit declaration of value constructor

};

S2 y2(5); // OK, invokes the explicitly declared value constructor
S2 x2; // Error, use of deleted function, S2::S2()

By declaring and then deleting the default constructor we have, it would appear that we
(1) made our intentions clear and (2) improved diagnostics for our clients at the cost of a
single extra line of self-documenting code. Ah, if only C++ were that straightforward.
Deleting certain special member functions — i.e., default constructor, move constructor,
or move-assignment operator — that are not necessarily implicitly declared can have non-
obvious consequence that adversely affect subtle compile-time properties of a class. One
such subtle property is whether the compiler considers it to be a literal type, i.e., a type
whose value is eligible for use as part of a constant expression. This same property
of being a literal type is what determines whether an arbitrary type may be passed by
value in the interface of a constexpr function; see Section 2.1.“constexpr Functions” on
page 257.
As a simple illustration of a subtle compile-time difference between S1 and S2, consider this
practically useful pattern for a developer’s “test” function that will compile if and only if its
by-value parameter, x, is of a literal type:
constexpr int test(S0 x) { return 0; } // OK, S0 is a literal type.
constexpr int test(S1 x) { return 0; } // Error, S1 is not a literal type.
constexpr int test(S2 x) { return 0; } // OK, S2 is a literal type.

For the compiler to treat a given class type as a literal type, it must, among other things, have
at least one constructor (other than the copy or move constructor) declared as constexpr.
In the case of the empty S0 class, the implicitly generated default constructor is trivial
and so it is implicitly declared constexpr too. Class S1’s explicitly declared nonconstexpr
value constructor suppresses the declaration of its only constexpr constructor, the default
constructor; hence, S1 does not qualify as a literal type.
Finally, by conspicuously declaring and deleting S2’s default constructor, we declare it
nonetheless. What’s more, the declaration brought about by deleting it is the same as if
it had been generated implicitly (or declared explicitly and then defaulted); hence, S2,
unlike S1, is a literal type. Go figure!

59

lorihughes
Cross-Out

lorihughes
Inserted Text
deleted

lorihughes
Inserted Text
as




