“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 582 — #608

Lambdas Chapter 2 Conditionally Safe Features

can be captured by copy or captured by reference. Orthogonally, each variable can
be explicitly captured or implicitly captured. We’ll examine each of these aspects of
lambda capture in turn.

Syntactically, the lambda capture consists of an optional capture default followed by a
comma-separated list of zero or more identifiers (or the keyword this), which are explicitly
captured. The capture default can be one of = or & for capture by copy or capture by
reference, respectively. If there is a capture default, then this and any local variables in scope
that are ODR-used within the lambda body and not explicitly captured will be implicitly
captured.

void f1()
{
inta=0, b=1, c = 2;
auto c1 = [a, b]{ return a + b; };
// a and b are explicitly captured.
auto c2 = [&]{ return a + b; };
// a and b are implicitly captured.
auto c3 = [&, b]{ return a + b; };
// a is implicitly captured, and b is explicitly captured.
auto c4 = [a]{ return a + b; }
// Error, b is ODR-used but not captured.
}

The Standard defines the lambda introducer as the lambda capture together with its
surrounding [and]. If the lambda introducer is an empty pair of brackets, no variables
will be captured, and the lambda is stateless:

auto c1 = []{ /*...*/ }; // empty lambda capture

The lambda capture enables access to portions of the local stack frame. As such, only
variables with automatic storage duration — i.e., nonstatic local variables — can be cap-
tured, as we’ll see in detail later in this section and the lambda body section. An explicitly
captured variable whose name is immediately preceded by an & symbol in the lambda capture
is captured by reference; without the &, it is captured by copy. If the capture default is &,
then all implicitly captured variables are captured by reference. Otherwise, if the capture
default is =, all implicitly captured variables are captured by copy:

void f2()
{
int a =0, b =1;
auto c1 = [&a]{ /*...*/ return a; }; // a captured by reference
auto c2 = [a] { /*...*/ return a; }; // a captured by copy
auto c3 = [a, &b] { return a + b; };
// a 1is explicitly captured by copy, and b is explicitly
// captured by reference.
auto c4 = [=]{ return a + b; };
// a and b are implicitly captured by copy.
auto c5 = [&]{ return &a; };
// a 1is implicitly captured by reference.

582

lorihughes
Highlight
[set static in code font]

