
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 580 — #606

i
i

i
i

i
i

Lambdas Chapter 2 Conditionally Safe Features

The callFuncPtr function takes a callback in the form of a pointer to function. Even though
it is not a template, it can be called with a lambda argument having the same parameter
types, the same return type, and an empty lambda capture; the closure object is converted
to an ordinary pointer to function. This conversion is not available in the second call to
callFuncPtr because the lambda capture is not empty.
Conversion to function pointer is considered a user-defined conversion operator and thus
cannot be implicitly combined with other conversions on the same expression. It can, how-
ever, be invoked explicitly, as needed:
using Fp2 = int(*)(int); // function­pointer type

struct FuncWrapper
{

FuncWrapper(Fp2) { /*...*/ } // implicit conversion from function­pointer
// ...

};

int f2(FuncWrapper);
int i2 = f2([](int x) { return x; }); // Error, two user­defined conversions
int i3 = f2(static_cast<Fp2>([](int x) { return x; })); // OK, explicit cast
int i4 = f2(+[](int x) { return x; }); // OK, forced conversion

The first call to f2 fails because it would require two implicit user-defined conversions: one
from the closure type to the Fp2 function-pointer type and one from Fp2 to FuncWrapper. The
second call succeeds because the first conversion is made explicit with the static_cast.
The third call is an interesting shortcut that takes advantage of the unary operator+ being
defined as the identity transformation for pointer types. Thus, the closure-to-pointer conver-
sion is invoked for the operand of operator+, which returns the unchanged pointer, which,
in turn, is converted to FuncWrapper; the first and third steps of this sequence use only
one user-defined conversion each. The Standard Library std::function class template pro-
vides another way to pass a function object of unnamed type, one that does not require the
lambda capture to be empty; see Use Cases — Use with std::function on page 601.
The compile-time and runtime phases of defining a closure type and constructing a closure
object from a single lambda expression resembles the phases of calling a function tem-
plate; what looks like an ordinary function call is actually broken down into a compile-time
instantiation and a runtime call. The closure type is deduced when a lambda expression is
encountered during compilation. When the control flow passes through the lambda expres-
sion at run time, the closure object is constructed from the list of captured local variables.
In the numAboveAverageSalaries example on page 576, the SalaryIsGreater class can be
thought of as a closure type — created by hand instead of by the compiler — whereas
the call to SalaryIsGreater(average) is analogous to constructing the closure object at
run time.

580

lorihughes
Cross-Out

[resemble]




