
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 575 — #601

i
i

i
i

i
i

Section 2.1 C++11 Lambdas

Library algorithms, this task seems trivial: (1) sum all of the salaries using std::accumulate,
(2) calculate the average salary by dividing this sum by the total number of employees,
and (3) count the number of employees with above-average salaries using std::count_if.
Unfortunately, both std::accumulate and std::count_if require callbacks to return the
salary for an Employee and to supply the criterion for counting, respectively. The callback
for std::accumulate must take two parameters — the current running sum and an element
from the sequence being summed — and must return the new running sum:
struct SalaryAccumulator
{

long operator()(long currSum, const Employee& e) const
// returns the sum of currSum and the salary field of e

{
return currSum + e.salary;

}
};

The callback for std::count_if is a predicate (i.e., an expression that yields a Boolean
result in response to a yes-or-no question) that takes a single argument and returns true if
an element having that value should be counted and false otherwise. In this case, we are
concerned with Employee objects having salaries above the average. Our predicate functor
must, therefore, carry around that average so it can compare the average to the salary of
the employee that is supplied as an argument:
class SalaryIsGreater // function object constructed with a threshold salary
{

const long d_thresholdSalary;

public:
explicit SalaryIsGreater(long ts) : d_thresholdSalary(ts) { }

// construct with a threshold salary, ts

bool operator()(const Employee& e) const
// return true if the salary for Employee e is greater than the
// threshold salary supplied on construction, false otherwise

{
return e.salary > d_thresholdSalary;

}
};

Note that, unlike our previous functor classes, SalaryIsGreater has a member variable; i.e.,
it has state. This member variable must be initialized, necessitating a constructor. The call
operator compares its input argument against this member variable to compute the predicate
value.
With these two functor classes defined, we can finally implement the simple three-step
algorithm for determining the number of employees with salaries greater than the average:

575

sbreitstein
Cross-Out

sbreitstein
Inserted Text
int

sbreitstein
Cross-Out

sbreitstein
Inserted Text
int

lorihughes
Inserted Text
 long

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Highlight
per Steven, change to long long

lorihughes
Sticky Note
Marked set by lorihughes




