
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 571 — #597

i
i

i
i

i
i

Section 2.1 C++11 initializer_list

dependency, the aforementioned free functions in the <iterator> header were also added
to many other headers, including those for all of the standard containers.
As subsequent editions of the Standard have added to the set of related, free function
overloads (for example, empty, added in C++17), those additional overloads have been
added to multiple headers so that idiomatic generic code does not need to include additional
headers. However, due to the freestanding requirement, none of those additional overloads
are available through the <initializer_list> header.

See Also

• “Braced Init” (§2.1, p. 215) provides further details regarding object initialization and
construction using braced lists and std::initializer_lists.

Further Reading

• An overview of the myriad problems associated with initialization is presented in
stroustrup05a.

• The original proposal to achieve a uniform initialization syntax based on initializer
lists can be found in stroustrup05b.

• Andrzej Krzemieński details why and how std::initializer_list can incur insidious
runtime overhead due to excessive copying in krzemienski16.

Appendix

A brief history of user customization to support range-based for

The original incarnation of the range-based for loop was built around the proposed con-
cepts language feature. The range argument to the for loop would satisfy the range concept,
which the user could customize with a concept_map to adapt third-party libraries that did
not have begin and end member functions.
When concepts were pulled after the first ISO ballot, the committee did not want to lose
range-based for, so a new scheme was invented: The compiler would look for begin and end
free functions. The Standard Library would provide the primary template for these functions,
and #include <iterator> would be required for the range-based for loop to work, much
like #include <typeinfo> is required to enable the typeid operator. Suggestions were made
— and rejected — that the core feature should look for the member functions (just like
the template) before looking for the free functions as the last resort. To make the standard
library easy to use, the primary template for the begin and end functions was added to every
standard container header, to <regex>, to <string>, and would be added on an ongoing
basis to any new headers for types representing a range.

571

lorihughes
Inserted Text
the 

lorihughes
Cross-Out

lorihughes
Inserted Text
feature was




