“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 56 — #82

Deleted Functions Chapter 1 Safe Features

class ByteStream

{
public:
void send(unsigned char byte) { /*..."/ }
void send(int) = delete;
/7 ...
}
void f()
{
ByteStream stream;
stream.send(0); // Error, send(int) is deleted. (1)
stream.send('a'); // Error, send(int) is deleted. (2)
stream.send(0OL); // Error, ambiguous (3)
stream.send(@U); // Error, ambiguous (4)
stream.send(0.0); // Error, ambiguous (5)
stream.send(
static_cast<unsigned char>(100)); // OK (6)
}

Invoking send with an int — noted with (1) in the code above — or any integral type, other
than unsigned char, that promotes to int (2) will map exclusively to the deleted send(int)
overload; all other integral, (3) and (4), and floating-point types (5) are convertible to both
via a standard conversion and hence will be ambiguous. Note that implicitly converting
from unsigned char to either a long or unsigned integer involves a standard conversion
(not just an integral promotion), the same as converting to a double. An explicit cast to
unsigned char (6) can always be pressed into service if needed.

Hiding a structural, nonpolymorphic base class’s member function

Avoiding deriving publicly from concrete classes is commonly advised because by doing
so, we do not hide the underlying capabilities, which can easily be accessed (potentially
breaking any invariants the derived class might want to keep) via assignment to a pointer or
reference to a base class, with no casting required. Worse, inadvertently passing such a class
to a function taking the base class by value will result in slicing, which can be especially
problematic when the derived class holds data. A more robust approach would be to use
layering or at least private inheritance.! Best practices notwithstanding,? it can be cost-
effective in the short term to provide an elided “view” on a concrete class for trusted clients.
Imagine a class AudioStream designed to play sounds and music that — in addition to
providing basic “play” and “rewind” operations — sports a large, robust interface:

For more on improving compositional designs at scale, see lakos20, section 3.5.10.5, “Realizing Mul-
ticomponent Wrappers,” and section 3.7.3, “Improving Purely Compositional Designs,” pp. 687-703 and
726727, respectively.

2See meyers92, “Item 38: Never define an inherited default parameter value,” pp. 132-135.

56

lorihughes
Highlight
[move the sentence to follow the existing paragraph as a new paragraph.]

