
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 55 — #81

i
i

i
i

i
i

Section 1.1 C++11 Deleted Functions

Using the = delete syntax on declarations that are private results in error messages concern-
ing privacy, not the use of deleted functions. Care must be exercised to make both changes
when converting code from the old style to the new syntax.

Preventing a particular implicit conversion

Certain functions — especially those that take a char as an argument — are prone to
inadvertent misuse. As a truly classic example, consider the C library function memset,
which might be used to write the character * five times in a row, starting at a specified
memory address, buf:
#include <cstdio> // puts
#include <cstring> // memset

void f()
{

char buf[] = "Hello World!";
memset(buf, 5, '*'); // undefined behavior: buffer overflow
puts(buf); // expected output: "***** World!"

}

Sadly, inadvertently reversing the order of the last two arguments is a commonly recurring
error, and the C language provides no help. As shown above, memset writes the nonprinting
character '\x5' 42 (i.e., the integer value of ASCII '*') times, way past the end of buf. In
C++, we can target such observed misuse using an extra deleted overload:
namespace my {
void* memset(void* str, int ch, std::size_t n); // Standard Library equivalent
void* memset(void* str, int n, char) = delete; // defense against misuse
}

Pernicious user errors can now be reported during compilation:
void f2()
{

char buf[] = "Hello World!";
my::memset(buf, 5, '*'); // Error, call to deleted function
my::memset(buf, '*', (std::size_t)5); // OK

}

Preventing all implicit conversions

The ByteStream::send member function on the next page is designed to work with 8-bit
unsigned integers only. Providing a deleted overload accepting an int forces a caller to
ensure that the argument is always of the appropriate type:

55

lorihughes
Inserted Text
clients of the class receiving

lorihughes
Cross-Out

lorihughes
Inserted Text
certain

