
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 529 — #555

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

made trivial by an implementation. The default constructors of both std::pair and
std::tuple require that they value-initialize their elements, resulting in operations
that can never be trivial.

4. Conditionally defaultable operations — The remaining operations are defined
in such a way that they might be eligible to use = default for some potential tem-
plate arguments. A noteworthy example is the assignment operators of std::pair and
std::tuple, which are required to do a memberwise assignment, even when the mem-
ber type is a reference. The defaulted assignment operation would be deleted in this
case, so for at least some template arguments these operations will not be trivial. It
would be possible to conditionally default these operations for nonreference types, but
that involves partial specialization and complicated inheritance schemes or the need
for an explosion of mildly varying implementations. This significant cost leads most
library vendors to not attempt to make these operations trivial, and their being trivial
is something that must be left as QoI and not a trait that can be portably depended
upon.64

The Standard does not describe the layout of its classes, nor does it list the private mem-
bers that may be used to implement them. In principle, the implementation of std::pair
could have additional private members or declare first and second in different public base
classes,65 resulting in a conforming implementation that is never a standard-layout type.
Similarly, std::tuple is often implemented through inheritance (recursively or through
pack expansion) of a distinct type for each member element, resulting in a type that
cannot be a standard-layout type for anything with more than one element. An implemen-
tation could provide distinct specializations for standard-layout fixed numbers of elements,
but having multiple such specializations would be a labor-intensive solution to achieve stan-
dard layout for a subset of potential template arguments and is a QoI choice that standard
library vendors do not seem to have made.

See Also

• “Aggregate Init ’14” (§1.2, p. 138) introduces the notion of default member initializa-
tion to aggregates.

• “Braced Init” (§2.1, p. 215) provides additional insight into aggregates as well as other
forms of braced initialization.

• “constexpr Functions” (§2.1, p. 257) shows how trivial types can be made usable at
compile time.

64Modern versions of GCC, Clang, and MSVC always implement std::pair’s copy and move-assignment
operators as user-provided functions.

65An example of such an implementation can be found in the BDE open-source library implementation
of pair maintained by the authors of this book. This implementation partially specializes pair for template
arguments of reference type such that instantiations are trivially copyable if and only if both template arguments
are of trivially copyable nonreference type; see bde14, /groups/bsl/bslstl/bslstl_pair.h.

529

lorihughes
Inserted Text
-




