
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 524 — #550

i
i

i
i

i
i

Generalized PODs '11 Chapter 2 Conditionally Safe Features

Class V above is trivially copyable in every version of C++, but the
std::is_trivially_copyable trait might not reflect that on some older versions of C++14
compilers, depending on which interpretation of that Standard is in effect; see Relevant
standard type traits are unreliable on page 527.
One might question what happens with trivially copyable types that have const-qualified or
reference data members and whether bitwise copying (e.g., using std::memcpy) such objects
has undefined behavior as these bitwise-copy operations inevitably overwrite a reference or
const object. Performing a bitwise copy of such objects and then subsequently using that
data in any way was modified in C++20, when a twofold change was made: (1) If a nonconst
object — referred to by a reference, pointer, or name (call it a ref ) — is destroyed and a
new object of the same type is subsequently constructed at the same location, the usability
of the original ref, as of C++20, is not impacted by whether the object contains a const
or reference subobject, whereas the existence of such a subobject, prior to C++20, would
have rendered the ref unusable; and (2) std::memcpy and std::memmove implicitly create a
new object in the destination location, making the previously introduced rule applicable to
cases of bitwise copy using either std::memcpy or std::memmove.52 Note that user-defined
bitwise copy (e.g., using unsigned chars directly) still has UB as it does not begin the
lifetime of the target object. Also note that a valid bitwise copy using std::memcpy or
std::memmove implicitly creates a new object — i.e., has copy-construction semantics —
even if the only nondeleted trivial function conferring trivially copyable status is one of the
assignment operators.
As an example of the kind of UB that might occur via optimization in C++11/14, con-
sider that a compiler may cache the result of reading a const data member in a register,
as the value may not change within the lifetime of the object in a well-defined program.
Any attempt to replace that object via std::memcpy might be respected, but the stale
value in the register will not necessarily be invalidated, so subsequent reads of that data
member might produce the old value. A C++20 compiler, conversely, must now also allow
for the possibly that such an object might be overwritten by std::memcpy or placement
::operator new and inhibit this particular optimization in such cases.53 For compilers imple-
menting Standards prior to C++20, we can reduce risks in generic code by checking that a
type is both trivially copyable and either copy assignable or move assignable (e.g., using
std::is_assignable) before attempting to use std::memcpy, so as to avoid UB associated
with const- and reference-qualified nonstatic data members. Note that the additional check
for assignability will reject trivially copyable types having no publicly invocable assignment
operators, even absent any const or reference nonstatic data members. Such rejection
might better reflect the semantic intent of the class author anyway; see Potential Pitfalls
— Using memcpy on objects having const or reference subobjects on page 489.

52See smith20.
53See CWG issue 1776; finland13.

524

lorihughes
Highlight
[set the whole term in gloss font and static in code font]

lorihughes
Highlight
[set the whole term in gloss font and static in code font]




