
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 52 — #78

i
i

i
i

i
i

Delegating Ctors Chapter 1 Safe Features

See Also

• “Forwarding References” (§2.1, p. 377) provides perfect forwarding of arguments from
one ctor to another.

• “Variadic Templates” (§2.1, p. 873) describes how to implement constructors that
forward an arbitrary list of arguments to other constructors.

52

lorihughes
Cross-Out

lorihughes
Inserted Text
constructor

lorihughes
Line
[add new section to Potential Pitfalls; see next PDF page]



i
i

“LakosRomeo-EMCS-1e-2ndPrinting” — 2023/11/1 — 10:04 — page 52 — #78

i
i

i
i

i
i

Delegating Ctors Chapter 1 Safe Features

Predelegation work is awkward and error prone

Delegating constructors provide a convenient way for a constructor to first call another con-
structor and then execute additional statements after that first constructor has completed.
These additional statements are placed in the body of the delegating constructor. If we wish
to implement a constructor that executes additional statements before delegating to another
constructor, we have no convenient place for those statements. Our only option is to insert
expressions in the argument list of the member initializer. Such awkward constructions are
error-prone, particularly if correct functioning requires them to be evaluated in a particular
order:
class PointsInsideItself {

std::vector<int> d_contents;
std::vector<int>::const_iterator d_contentsIter;

PointsInsideItself(int index, std::vector<int> contents)
: d_contents(std::move(contents)),
, d_contentsIter(contents.begin() + index)
{}

public:
PointsInsideItself(M&& source) // delegating constructor
: PointsInsideItself(source.d_contentsIter - source.d_contents.begin()

std::move(source.d_contents))
{
}

};

In the example delegating constructor above, we are trying to calculate the index,
source.d_contentsIter - source.d_contents.begin(), before entering the target con-
structor. However, if the second parameter of the target constructor happens to be ini-
tialized before the first parameter, then the initialization of the second parameter moves
from source, which invalidates source.d_contentsIter and thus implies that the evalua-
tion of source.d_contentsIter - source.d_contents.begin() has undefined behavior.
To make this example correct, we could change the target constructor’s signature so that
the second parameter is an rvalue reference, thus ensuring that the initialization of the
target constructor’s parameters has no side effects. Operations that have no side effects
can be evaluated in any order without affecting the correctness of the program.

See Also

• “Forwarding References” (§2.1, p. 377) provides perfect forwarding of arguments
from one constructor to another.

• “Variadic Templates” (§2.1, p. 873) describes how to implement constructors that
forward an arbitrary list of arguments to other constructors.

52

lorihughes
Pencil
[new section added]




