“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 513 — #539

Section 2.1 C++11 Generalized PODs '11

reinterpret_cast from one pointer type to another or from one reference type to another is
valid, so long as the cast does not drop a cv-qualifier (which would be ill formed). It is only an
access through the pointer or reference that might be invalid, leading to undefined behavior.
The general rule is that an access to an object through the result of a reinterpret_cast<T*>
is valid if and only if an object of type T exists at that address at the time it is accessed. Most
of the pitfalls described below are violations of this concise, general, and widely applicable
rule.

1. Using reinterpret_cast for object conversions — A reinterpret_cast operates
between pointer types, between reference types, between pointer-to-member types,
and between pointer types and integral types, but not between other object types. It
is ill formed to use reinterpret_casts to perform type conversions, even among
types for which conversions exist. We cannot, for example, reinterpret_cast an int
to a float or vice versa, nor can we reinterpret_cast a prvalue such as 3.14 to
a reference of any kind:

struct Classl { explicit Classi(int); }; // explicitly convertible from int

float rcl = reinterpret_cast<float>(3); // Error

int rc2 = reinterpret_cast<int>(3.0); // Error

const double& rc3 = reinterpret_cast<const double&>(3.14); // Error

int&& rc4 = reinterpret_cast<int&&>(3.14); // Error, prvalue
int rc5 = reinterpret_cast<int>(3); // OK, no-op
unsigned rcé = reinterpret_cast<unsigned>(3); // Error

Class1 rc7 = reinterpret_cast<Classi>(5); // Error

float scl = static_cast<float>(3); // 0K, but unnecessary
int sc2 = static_cast<int>(3.0); // 0K, " "
const double& sc3 = static_cast<const double&>(3.14); // 0K, " "
int&& sc4 = static_cast<int&&>(3.14); // OK, temporary obj
int sc5 = static_cast<int>(3); // 0K, no-op

unsigned sc6é = static_cast<unsigned>(3); // OK, but unnecessary
Classi sc7 = static_cast<Class1>(5); // OK

Note that all of the ill-formed uses of reinterpret_cast above are valid uses of
static_cast.

2. Accessing objects of unrelated types via reinterpret_cast — Although
reinterpret_cast between incompatible pointer and reference types is always valid,
undefined behavior can arise when attempting to dereference such a converted pointer
or reference: Unless there is somehow a valid object of the appropriate type at that
address, accessing a value stored there has undefined behavior.

To illustrate the austerity of this rule, consider that even though two different triv-
ial standard-layout types, e.g., A and B below, might have precisely the same layout

513


lorihughes
Cross-Out

lorihughes
Inserted Text
-




