
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 505 — #531

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

for (; numBytes; ­­numBytes)
{

*dp++ = *sp++;
}

}

We have deliberately chosen to use unsigned char as it is the only ordinary character type
that is guaranteed to represent a unique valid value for every possible bit pattern on every
conforming platform.

Misuse of unions

It is a common misconception that it is ever well-defined behavior to write to a scalar
member of a union and then read from another member of that union, sometimes referred
to as a union cast or type punning, even when the two members are of identical type:
union U0 // Writing to a and then reading from b has undefined behavior.
{

int a; // scalar element of type int
int b; // " " " " "

};

Amotivation for this form of misuse would be to write a function that determines endianness:
union U1
{

int a;
unsigned char b[sizeof a];

} const u1 = { 1 };

bool isBigEndian1() { return 0 == u1.b[0]; } // Bug, type punning has UB.

A proper portable implementation can be achieved using, e.g., the Posix htonl function39:
#include <arpa/inet.h> // htonl

bool isBigEndian2()
{

return htonl(1) == 1; // OK
}

No reinterpretation of the bit representation of a scalar value via access to parallel mem-
bers of a union is ever well-defined behavior in C++. There are, however, other ways to
accomplish this specific task natively; see Abuse of reinterpret_cast on page 506.

39As of C++20, we can query the big member of the standard enum std::endian, defined in the standard
header <bit>, to resolve this question portably at compile time.

505

lorihughes
Cross-Out

lorihughes
Inserted Text
OSIX

[POSIX]




